D.) It cannot be broken down into a simple substance through chemical means...
Answer:
The molar mass of unknown gas is 145.82 g/mol.
Explanation:
Volume of oxygen gas effused under time t = 8.24 mL
Effusion rate of oxygen gas = 
Molar mass of oxygen gas = 32 g/mol
Volume of unknown gas effused under time t = 3.86 mL
Effusion rate of unknown gas = 
Molar mass of unknown gas = M
Graham's Law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:




Answer:
- Partial pressure He = 276 torr
- Partial pressure Ar = 457 torr
- Total pressure = 733 torr
Explanation:
Assuming temperature remains constant, we can use Boyle's law to solve this problem: P₁V₁=P₂V₂.
Once the two flasks are connected and the stopock opened, the total volume is:
Now we use Boyle's law <em>twice</em>, to <u>calculate the new pressure of </u><em><u>each</u></em><u> gas</u>:
- He ⇒ 752 torr * 275 mL = P₂He * 750 mL
P₂He = 276 torr
- Ar ⇒ 722 torr * 475 mL = P₂Ar * 750 mL
P₂Ar = 457 torr
Finally we <u>calculate the total pressure</u>, adding the partial pressures:
- Total pressure = P₂He + P₂Ar = 733 torr
The equilibrium constant for the reaction is 0.00662
Explanation:
The balanced chemical equation is :
2NO2(g)⇌2NO(g)+O2(g
At t=t 1-2x ⇔ 2x + x moles
The ideal gas law equation will be used here
PV=nRT
here n=
=
= density
P =
density is 0.525g/L, temperature= 608.15 K, P = 0.750 atm
putting the values in reaction
0.75 = 
M = 34.61
to calculate the Kc
Kc=![\frac{ [NO] [O2]}{NO2}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BNO%5D%20%5BO2%5D%7D%7BNO2%7D)
x M NO2 +
M NO+
M O2
Putting the values as molecular weight of NO2, NO,O2

34.61= 
x= 0.33
Kc= 
putting the values in the above equation
Kc = 0.00662