Answer:
<em>The probability between 16.1 and 17.6 years = 0.0214 years </em>
<em>The Estimate probability between 16.1 and 17.6 years = 2.14 years</em>
<em>Step-by-step explanation:</em>
<u><em>Step(i)</em></u>:-
Given the average of Population 13.1 years
The standard deviation of the Population = 1.5 years
<em>Let 'x' be the random variable in Normal distribution</em>
<em>Given x = 16.1</em>


= 2
<em> Z₁ = 2</em>
<u><em>Step(ii):</em></u><em>-</em>
<em>Given x = 17.6</em>

<em> Z ₂= 3</em>
<em> Z₁ = 2 and </em> <em> Z ₂= 3 are both positive</em>
<em>The Estimate probability between 16.1 and 17.6 years</em>
<em>P( 16.1<x<17.6) = P( 2 < Z < 3)</em>
<em> </em> = A(3) - A(2)
= 0.49865 - 0.4772 (from normal table)
= 0.0214
<em>The probability between 16.1 and 17.6 years = 0.0214 years </em>
<em> = 0.0214 ×100 </em>
<em> = 2.14 years</em>
<u><em>Final answer</em></u><em>:-</em>
<em>The Estimate probability between 16.1 and 17.6 years = 2.14 years</em>