
<h3><u>Analysis </u><u>of </u><u>graph </u><u>:</u><u>-</u></h3>
We have given one graph which is plot between distance and time. where time is in minutes and distance is in seconds.
<u>According </u><u>to </u><u>the </u><u>graph </u>
- For the first 5 minute ( O to A) , The distance is continously increasing 2m / per minute .
- For the 5 minute that is from 5 minute to 13 minute ( A to B) both marellize and her dog wally moving with the constant speed .
- For next 3 minutes that is from 10 minutes to 13 minutes ( B to C) , The distance is continously decreasing with time .
- For next 3 minutes that is from 13 to 16 minutes ( C to D) , Again they moved with constant speed .
- For next 6 minute that is from 16 to 21 minutes ( D to E) . Again, There distance is increasing with time .
- Again For next 4 minutes that is 21 to 25 minutes , they are moving with constant velocity .
<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u></h3>
1) Between O and A
- The marellize and wally when moving between O to A , The distance is constantly increasing with time.
- The graph is Straight line
2) Between A and B
- The marellize and wally when moving between A to B, The distance remains the same with time that is they moving with constant speed.
- The graph is constant or steady
3) Between B to C
- The marellize and wally when moving between B to C, The distance is constantly decreasing with time .
- The graph is straight line but it follows decreasing function .
4) For covering the First 6 km ,
<u>According </u><u>to </u><u>the </u><u>graph</u><u>, </u>
- For covering first 6 km, They took 3 minutes.
5) No, Marellize and wally walk does not from where they have started.
<u>According </u><u>to </u><u>the </u><u>graph </u>
- It is end at 5 m instead of 0m .
Answer:
G. ABD = 74
H. DBC = 206
I. XYW = 33.75
J. WYZ = 46.25
Step-by-step explanation:
For G and H: You have a straight line (ABC) with another line coming off of it, creating two angles (ABD and DBC). A straight line has an angle of 180 degrees. This means that the two angles from the straight line when combined will give you 180 degrees. Solve for x.
ABD + DBC = ABC
(1/2x + 20) + (2x - 10) = 180
1/2x + 20 + 2x - 10 = 180
5/2x + 10 = 180
5/2x = 170
x = 108
Now that you have x, you can solve for each angle.
ABD = 1/2x + 20
ABD = 1/2(108) + 20
ABD = 54 + 20
ABD = 74
DBC = 2x - 10
DBC = 2(108) - 10
DBC = 216 - 10
DBC = 206
For I and J: For these problems, you use the same concept as before. You have a right angle (XYZ) that has within it two other angles (XYW and WYZ). A right angle has 90 degrees. Combine the two unknown angles and set it equal to the right angle. Solve for x.
XYW + WYZ = XYZ
(1 1/4x - 10) + (3/4x + 20) = 90
1 1/4x - 10 + 3/4x + 20 = 90
2x + 20 = 90
2x = 70
x = 35
Plug x into the angle values and solve.
XYW = 1 1/4x - 10
XYW = 1 1/4(35) - 10
XYW = 43.75 - 10
XYW = 33.75
WYZ = 3/4x + 20
WYZ = 3/4(35) + 20
WYZ = 26.25 + 20
WYZ = 46.25
Answer:
Area = 10
Step-by-step explanation:
(
×
) ÷ 2 = 10
Answer:
Mean= 31
Step-by-step explanation:
To find the mean you need to add all the number together and then divide by how many ever numbers there are.
In this case
25 + 25 + 30 + 35 + 40=155
There are 5 numbers so you would divide by 5
155/5
=31