Answer:
m∠EGC=70°
Step-by-step explanation:
we know that
The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite
so
m∠EGC=(1/2)[arc EC+arc DF]
<u><em>Find the value of x</em></u>
we have
m∠EGC=(7x+7)°
arc EC=50°
arc DF=10x°
substitute and solve for x
(7x+7)°=(1/2)[50°+10x°]
14x+14=50+10x
14x-10x=50-14
4x=36
x=9
<u><em>Find the measure of angle EGC</em></u>
m∠EGC=(7x+7)°
substitute the value of x
m∠EGC=(7(9)+7)°=70°
Here i how I would do it:<span>f(x)=−<span>x2</span>+8x+15</span>
set f(x) = 0 to find the points at which the graph crosses the x-axis. So<span>−<span>x2</span>+8x+15=0</span>
multiply through by -1<span><span>x2</span>−8x−15=0</span>
<span>(x−4<span>)2</span>−31=0</span>
<span>x=4±<span>31<span>−−</span>√</span></span>
So these are the points at which the graph crosses the x-axis. To find the point where it crosses the y-axis, set x=0 in your original equation to get 15. Now because of the negative on the x^2, your graph will be an upside down parabola, going through<span>(0,15),(4−<span>31<span>−−</span>√</span>,0)and(4+<span>31<span>−−</span>√</span>,0)</span>
To find the coordinates of the maximum (it is maximum) of the graph, you take a look at the completed square method above. Since we multiplied through by -1, we need to multiply through by it again to get:<span>f(x)=31−(x−4<span>)2</span></span><span>
Now this is maximal when x=4, because x=4 causes -(x-4)^2 to vanish. So the coordinates of the maximum are (4,y). To find the y, simply substitute x=4 into the equation f(x) to give y = 31. So it agrees with the mighty Satellite: (4,31) is the vertex.</span>
Answer:
102 feet.
Step-by-step explanation:
-23ft + 125ft = 102 ft
Answer:
If this is the complete question them the answer is 1250 m²
Step-by-step explanation:
the pool in the drawing is 15x7.5 and the scale is 3/1000 so if the size in the drawing is 3 then the actual is 1000.
x=15*1000/3=5000cm which would be 50m
x=7.5*1000/3=2500cm which is 25m
the actual area of the pool is 50*25=1250 m²