When dT = Kf * molality * i
= Kf*m*i
and when molality = (no of moles of solute) / Kg of solvent
= 2.5g /250g x 1 mol /85 g x1000g/kg
=0.1176 molal
and Kf for water = - 1.86 and dT = -0.255
by substitution
0.255 = 1.86* 0.1176 * i
∴ i = 1.166
when the degree of dissociation formula is: when n=2 and i = 1.166
a= i-1/n-1 = (1.166-1)/(2-1) = 0.359 by substitution by a and c(molality) in K formula
∴K = Ca^2/(1-a)
= (0.1176 * 0.359)^2 / (1-0.359)
= 2.8x10^-3
Answer:
The hydrogen atom has just one electron, but many spectral lines. However it contains many shells and the movement of that electron from one shell to another causes the release of energy and also an emission of photons.
A spectral line are dark or bright lines formed within a specific frequency range which differ from other frequencies.Because of the difference of energy for the various shells, it produces different wavelengths and this is the reason for the many spectral line for hydrogen.
Answer:
a) is correct.......,.....
Answer:
0.1 mole of CH₄
Explanation:
From the question given above, the following data were obtained:
Volume of CH₄ = 2.24 L
Number of mole of CH₄ =?
The number of mole of CH₄ can be obtained as follow:
Recall:
1 mole of a gas occupy 22.4 L at stp. This implies that 1 mole of CH₄ occupies 22.4 L at stp.
22.4 L = 1 mole of CH₄
Therefore,
2.24 L = 2.24 × 1 mole of CH₄ / 22.4
2.24 L = 0.1 mole of CH₄.
Answer: The gas phase is unique among the three states of matter in that there are some simple models we can use to predict the physical behavior of all gases—independent of their identities. We cannot do this for the solid and liquid states. ... Gas particles do not experience any force of attraction or repulsion with each other.
Explanation: