My guess would be "B) they were produced by volcanoes" because hawaii has a bunch of volcanoes and volcanoes can produce extra land. While the other answers wouldn't make sense. Definitely B.
<h3>
Answer:</h3>
11.84 mol CoF₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Unbalanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[RxN - Balanced] CoCl₂ + F₂ → CoF₂ + Cl₂
[Given] 11.84 moles CoCl₂
[Solve] moles CoF₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol CoCl₂ → 1 mol CoF₂
<u>Step 3: Stoich</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

River Banks? I'm not completely sure but hope this helps!
Answer:
All of the above
Explanation:
(I'm assuming you meant to put Australia in the options)
Australia is in the southern hemisphere and has its summer in December etc. and Winter in July etc.
China is in the northern hemisphere and has its summer in July etc and Winter in December etc.
Explanation:
The solution of the lactic acd and sodium lactate is referred to as a buffer solution.
A buffer solution is an aqueous solution consisting of a mixture of a weak acid and its conjugate base, or vice versa. In this case, the weak acid is the lactic acid and the conjugate base is the sodium lactate.
Buffer solutions are generally known to resist change in pH values.
When a strong base (in this case, NaOH) is added to the buffer, the lactic acid will give up its H+ in order to transform the base (OH-) into water (H2O) and the conjugate base, so we have:
HA + OH- → A- + H2O.
Since the added OH- is consumed by this reaction, the pH will change only slightly.
The NaOH reacts with the weak acid present in the buffer sollution.