1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
2 years ago
13

Quiz 3-3 Parallel and Perpendicular Lines on the Coordinate Plane (Gina Wilson All Things Algebra 2014-2019) need these for a qu

iz please!

Mathematics
2 answers:
iVinArrow [24]2 years ago
8 0

Answer:

14. y = -2x - 1

15. y = -\frac{3}{4}x + 3

16. y = 4x + 9

17. y = -\frac{5}{3}x - 2

18. y = -⅔x - 5

19. y = 4x - 3

29. y = -3x - 7

Step-by-sep explanation:

✍️Equation of a line in slope-intercept form is given as y = mx + b. Where, m is the slope, and b is the y-intercept.

The following shows how to derive an equation of a line in slope-intercept form, if we are given a point and slope of the line between two points

14. (-7, 13); slope = -2.

Substitute x = -7, y = 13, and m = -2 into y = mx + b.

13 = (-2)(-7) + b

13 = 14 + b

Subtract 14 from both sides

13 - 14 = b

-1 = b

Substitute m = -2 and b = -1 in y = mx + b to derive the equation:

✅y = -2x + (-1)

y = -2x - 1

15. (-4, 6); slope = -¾

Substitute x = -4, y = 6, and m = -¾ into y = mx + b.

6 = (-\frac{3}{4})(-4) + b

6 = 3 + b

Subtract 3 from both sides

6 - 3 = b

3 = b

Substitute m = -¾ and b = 3 in y = mx + b to derive the equation:

✅y = -\frac{3}{4}x + 3

✍️The following shows how to derive an equation of a line in slope-intercept form, if we are given two points on the line, only.

16. (-5, -11) and (-2, 1)

Find the slope

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 -(-11)}{-2 -(-5)} = \frac{12}{3} = 4

Substitute x = -5, y = -11, and m = 4 into into y = mx + b.

-11 = (4)(-5) + b

-11 = -20 + b

Add 20 to both sides

-11 + 20 = b

9 = b

Substitute m = 4 and b = 9 in y = mx + b to derive the equation:

✅y = 4x + 9

17. (-6, 8) and (3, -7)

Find the slope

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - 8}{3 -(-6)} = \frac{-15}{9} = -\frac{5}{3}

Substitute x = -6, y = 8, and m = -⁵/3 into into y = mx + b.

8 = (-\frac{5}{3}(-6) + b

8 = 10 + b

Subtract 10 from both sides

8 - 10 = b

-2 = b

Substitute m = -⁵/3 and b = -2 in y = mx + b to derive the equation:

✅y = -\frac{5}{3}x - 2

18. Given that the line that passes through the point, (-6, -1) is parallel to y = -⅔x + 1, therefore, it would have the same slope value as -⅔, as the line it is parallel to.

So, using a point (-6, -1) and slope (m) = -⅔, we can generate the equation of the line in slope-intercept form as follows:

Substitute x = -6, y = -1, and m = -⅔ in y = mx + b, to find b.

-1 = (-⅔)(-6) + b

-1 = 4 + b

-1 - 4 = b

-5 = b

Substitute m = -⅔ and b = -5 in y = mx + b, to generate the equation of the line.

✅y = -⅔x - 5

19. Given that the line that passes through the point, (-2, -11) is perpendicular to y = -¼x + 2, therefore, it would have the a slope value that is the negative reciprocal of the slope of the line that it is perpendicular to.

The slope of the line that it is perpendicular to is -¼. Therefore, the slope of the line that passes through (-2, -11), would be 4. (4 is the negative reciprocal of -¼)

So, using the point (-2, -11) and slope (m) = 4, we can generate the equation of the line in slope-intercept form as follows:

Substitute x = -2, y = -11, and m = 4 in y = mx + b, to find b.

-11 = (4)(-2) + b

-11 = -8 + b

-11 + 8 = b

-3 = b

Substitute m = 4 and b = -3 in y = mx + b, to generate the equation of the line.

✅y = 4x - 3

20. To solve this problem, first find the slope of the line that runs through A(-10, 3) and B(2, 7):

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 3}{2 -(-10)} = \frac{4}{12} = \frac{1}{3}

Next, find the coordinates of the midpoint of AB.

M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})

M(\frac{-10 + 2}{2}, \frac{3 + 7}{2})

M(\frac{-8}{2}, \frac{10}{2})

M(-4, 5)

Since the slope of AB is ⅓, the slope of line l that is perpendicular to AB would be the negative reciprocal of ⅓.

Therefore, the slope of line l = -3.

Since line l, bisects AB, therefore, the coordinate of the mid-point of AB is also the same as a coordinate point on line l.

So therefore, using the midpoint, (-4, 5) and slope, m = -3, we can generate an equation for line l as follows:

Substitute x = -4, y = 5, and m = -3 into y = mx + b.

5 = (-3)(-4) + b

5 = 12 + b

Subtract 12 from both sides

5 - 12 = b

-7 = b

Substitute m = -3 and b = -7 in y = mx + b to derive the equation:

✅y = -3x + (-7)

y = -3x - 7

yKpoI14uk [10]2 years ago
4 0

Answer:

14. y = -2x -1

15. y = -\frac{3}{4}x +3

16. y= 4x + 9

17. y  = -\frac{5}{3}x -2

18. y= -\frac{2}{3}x -5

19. y = 4x -3

20. y = -3x -7

Step-by-step explanation:

Solving (14):

Given

(x_1,y_1) = (-7,13)

Slope (m) = -2

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 13 = -2(x -(-7))

y - 13 = -2(x +7)

y - 13 = -2x -14

Collect Like Terms

y = -2x -14 + 13

y = -2x -1

Solving (15):

Given

(x_1,y_1) = (-4,6)

Slope (m) = -\frac{3}{4}

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 6 = -\frac{3}{4}(x - (-4))

y - 6 = -\frac{3}{4}(x +4)

y - 6 = -\frac{3}{4}x -3

Collect Like Terms

y = -\frac{3}{4}x -3 + 6

y = -\frac{3}{4}x +3

Solving (16):

Given

(x_1,y_1) = (-5,-11)

(x_2,y_2) = (-2,1)

First, we need to calculate the slope\ (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{1 - (-11)}{-2 - (-5)}

m = \frac{1 +11}{-2 +5}

m = \frac{12}{3}

m = 4

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - (-11) = 4(x -(-5))

y +11 = 4(x+5)

y +11 = 4x+20

Collect Like Terms

y= 4x + 20 - 11

y= 4x + 9

Solving (17):

Given

(x_1,y_1) = (-6,8)

(x_2,y_2) = (3,-7)

First, we need to calculate the slope\ (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{-7 - 8}{3- (-6)}

m = \frac{-7 - 8}{3+6}

m = \frac{-15}{9}

m = -\frac{5}{3}

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 8 = -\frac{5}{3}(x -(-6))

y - 8 = -\frac{5}{3}(x +6)

y - 8 = -\frac{5}{3}x -10

Collect Like Terms

y  = -\frac{5}{3}x -10 + 8

y  = -\frac{5}{3}x -2

18.

Given

(x_1,y_1) = (-6,-1)

y = -\frac{2}{3}x+1

Since the given point is parallel to the line equation, then the slope of the point is calculated as:

m_1 = m_2

Where m_2 represents the slope

Going by the format of an equation, y = mx + b; by comparison

m = -\frac{2}{3}

and

m_1 = m_2 = -\frac{2}{3}

Equation in slope\ intercept\ form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - (-1) = -\frac{2}{3}(x - (-6))

y +1 = -\frac{2}{3}(x +6)

y +1 = -\frac{2}{3}x -4

y= -\frac{2}{3}x -4 - 1

y= -\frac{2}{3}x -5

19.

Given

(x_1,y_1) = (-2,-11)

y = -\frac{1}{4}x+2

Since the given point is parallel to the line equation, then the slope of the point is calculated as:

m_1 = -\frac{1}{m_2}

Where m_2 represents the slope

Going by the format of an equation, y = mx + b; by comparison

m_2 = -\frac{1}{4}

and

m_1 = -\frac{1}{m_2}

m_1 = -1/\frac{-1}{4}

m_1 = -1*\frac{-4}{1}

m_1 = 4

Equation in slope\ intercept\ form is:

y - y_1 = m(x-x_1)

(x_1,y_1) = (-2,-11)

Substitute values for y1, m and x1

y - (-11) = 4(x - (-2))

y +11 = 4(x +2)

y +11 = 4x +8

Collect Like Terms

y = 4x + 8 - 11

y = 4x -3

20.

Given

(x_1,y_1) = (-10,3)

(x_2,y_2) = (2,7)

First, we need to calculate the slope of the given points

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{7 - 3}{2 - (-10)}

m = \frac{7 - 3}{2 +10}

m = \frac{4}{12}

m = \frac{1}{3}

Next, we determine the slope of the perpendicular bisector using:

m_1 = -\frac{1}{m_2}

m_1 = -1/\frac{1}{3}

m_1 = -3

Next, is to determine the coordinates of the bisector.

To bisect means to divide into equal parts.

So the coordinates of the bisector is the midpoint of the given points;

Midpoint = [\frac{1}{2}(x_1+x_2),\frac{1}{2}(y_1+y_2)]

Midpoint = [\frac{1}{2}(-10+2),\frac{1}{2}(3+7)]

Midpoint = [\frac{1}{2}(-8),\frac{1}{2}(10)]

Midpoint = (-4,5)

So, the coordinates of the midpoint is:

(x_1,y_1) = (-4,5)

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1: m_1 = -3 & (x_1,y_1) = (-4,5)

y - 5 = -3(x - (-4))

y - 5 = -3(x +4)

y - 5 = -3x-12

Collect Like Terms

y = -3x - 12 +5

y = -3x -7

You might be interested in
8(10)2y = 7200<br> What the answer
garik1379 [7]

Answer:

y = 45

Explanation:

(8)(10)(2)y = 7200

[ Simplify both sides of the equation ]

160y = 7200

[ Divide both sides by 160 ]

160y / 160 = 7200 / 160

y = 45

Check:

8(10)2(45) = 7200

7 0
3 years ago
Using your knowledge of circles, label the following on the given diagram: chord, tangent, radius, secant, point of tangency and
Tanzania [10]
The purple line is tangent. Tangent line intersects a circle in only 1 point
The yellow dot is the point of tangency. It is the point where tangent line touches the circle
The light blue line is secant. Secant line intersects a circle in 2 points
The red line is the radius. Radius is the distance from center to the outer rim of the circle.
The green line is the diameter. It is the line passing through the center of a circle. It measures twice the radius
The gray line is the chord. Chord is the line whose endpoints lie on the circle.
Arc AB is a minor arc
Arc ABCD is a major arc

5 0
3 years ago
Plz help what is 8 t.=_______lb.?
larisa86 [58]

Answer:

16,000 lb.

Step-by-step explanation:

For every ton, it equals 2,000 pounds. So to find how many pounds is in 8 tons, just multiply 2,000 by 8. This would give you 16,000 pounds!

This is of course using the U.S. tons, so if you want to convert it for metric tons it would be 17,632 since 1 metric ton = 2204.

I hope this was able to help!

7 0
3 years ago
What is most likely the line of best fit for this scatter plot? Graph shows numbers from 0 to 10 at increments of 1 on the x axi
kolezko [41]

Answer:

Line B

Step-by-step explanation:

Line B would best fit the scatter plot because the dots aline most similar to how Line B does. If you were to look at the angle Line B is at, most of the dots line up in the way Line B does. Therefore, Line B best fits the scatter plot.

6 0
3 years ago
Read 2 more answers
14 divided 3/11 +14 x
slamgirl [31]

Answer:

14x+14/33

Step-by-step explanation:

14÷3/11+14x=

5 0
3 years ago
Other questions:
  • Find the common ratio
    11·1 answer
  • Select the correct answer. Which inequality is true? A. |-5| &gt; |-7| B. |-8| &lt; |-5| C. |9| &lt; |7| D. |-9| &gt; |8|
    13·1 answer
  • A store is selling a hat at a 55 percent markup. The store originally paid $16 for the hat. What is the retail price of that hat
    8·2 answers
  • A.If you deposit $10 into an empty bank account, and then withdraw $10 from the account, how much money is left in the account?
    10·1 answer
  • Which equation represents the following word problem?
    5·2 answers
  • Which of the following is a solution to the inequality below?<br> j&gt; 8
    13·1 answer
  • A baker makes 9 peach pies for every 3 apple pies he makes. Last week the baker made 6 apple pies. How many peach pies did he ma
    5·2 answers
  • The bakery bought 4 bags of flour containing 3.5 kg each. 0.475 kg of flour is needed to make a batch of muffins, and 0.65 kg is
    6·2 answers
  • Which expression is equivalent to the expression below? p+p+p+p+p+p+q+q+q+q p+p+p+p+p+p+q+q+q+q
    6·2 answers
  • What is the volume of the prism?<br> 4in height<br> 12in length <br> 6in width
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!