1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
guapka [62]
2 years ago
13

Quiz 3-3 Parallel and Perpendicular Lines on the Coordinate Plane (Gina Wilson All Things Algebra 2014-2019) need these for a qu

iz please!

Mathematics
2 answers:
iVinArrow [24]2 years ago
8 0

Answer:

14. y = -2x - 1

15. y = -\frac{3}{4}x + 3

16. y = 4x + 9

17. y = -\frac{5}{3}x - 2

18. y = -⅔x - 5

19. y = 4x - 3

29. y = -3x - 7

Step-by-sep explanation:

✍️Equation of a line in slope-intercept form is given as y = mx + b. Where, m is the slope, and b is the y-intercept.

The following shows how to derive an equation of a line in slope-intercept form, if we are given a point and slope of the line between two points

14. (-7, 13); slope = -2.

Substitute x = -7, y = 13, and m = -2 into y = mx + b.

13 = (-2)(-7) + b

13 = 14 + b

Subtract 14 from both sides

13 - 14 = b

-1 = b

Substitute m = -2 and b = -1 in y = mx + b to derive the equation:

✅y = -2x + (-1)

y = -2x - 1

15. (-4, 6); slope = -¾

Substitute x = -4, y = 6, and m = -¾ into y = mx + b.

6 = (-\frac{3}{4})(-4) + b

6 = 3 + b

Subtract 3 from both sides

6 - 3 = b

3 = b

Substitute m = -¾ and b = 3 in y = mx + b to derive the equation:

✅y = -\frac{3}{4}x + 3

✍️The following shows how to derive an equation of a line in slope-intercept form, if we are given two points on the line, only.

16. (-5, -11) and (-2, 1)

Find the slope

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{1 -(-11)}{-2 -(-5)} = \frac{12}{3} = 4

Substitute x = -5, y = -11, and m = 4 into into y = mx + b.

-11 = (4)(-5) + b

-11 = -20 + b

Add 20 to both sides

-11 + 20 = b

9 = b

Substitute m = 4 and b = 9 in y = mx + b to derive the equation:

✅y = 4x + 9

17. (-6, 8) and (3, -7)

Find the slope

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-7 - 8}{3 -(-6)} = \frac{-15}{9} = -\frac{5}{3}

Substitute x = -6, y = 8, and m = -⁵/3 into into y = mx + b.

8 = (-\frac{5}{3}(-6) + b

8 = 10 + b

Subtract 10 from both sides

8 - 10 = b

-2 = b

Substitute m = -⁵/3 and b = -2 in y = mx + b to derive the equation:

✅y = -\frac{5}{3}x - 2

18. Given that the line that passes through the point, (-6, -1) is parallel to y = -⅔x + 1, therefore, it would have the same slope value as -⅔, as the line it is parallel to.

So, using a point (-6, -1) and slope (m) = -⅔, we can generate the equation of the line in slope-intercept form as follows:

Substitute x = -6, y = -1, and m = -⅔ in y = mx + b, to find b.

-1 = (-⅔)(-6) + b

-1 = 4 + b

-1 - 4 = b

-5 = b

Substitute m = -⅔ and b = -5 in y = mx + b, to generate the equation of the line.

✅y = -⅔x - 5

19. Given that the line that passes through the point, (-2, -11) is perpendicular to y = -¼x + 2, therefore, it would have the a slope value that is the negative reciprocal of the slope of the line that it is perpendicular to.

The slope of the line that it is perpendicular to is -¼. Therefore, the slope of the line that passes through (-2, -11), would be 4. (4 is the negative reciprocal of -¼)

So, using the point (-2, -11) and slope (m) = 4, we can generate the equation of the line in slope-intercept form as follows:

Substitute x = -2, y = -11, and m = 4 in y = mx + b, to find b.

-11 = (4)(-2) + b

-11 = -8 + b

-11 + 8 = b

-3 = b

Substitute m = 4 and b = -3 in y = mx + b, to generate the equation of the line.

✅y = 4x - 3

20. To solve this problem, first find the slope of the line that runs through A(-10, 3) and B(2, 7):

slope (m) = \frac{y_2 - y_1}{x_2 - x_1} = \frac{7 - 3}{2 -(-10)} = \frac{4}{12} = \frac{1}{3}

Next, find the coordinates of the midpoint of AB.

M(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})

M(\frac{-10 + 2}{2}, \frac{3 + 7}{2})

M(\frac{-8}{2}, \frac{10}{2})

M(-4, 5)

Since the slope of AB is ⅓, the slope of line l that is perpendicular to AB would be the negative reciprocal of ⅓.

Therefore, the slope of line l = -3.

Since line l, bisects AB, therefore, the coordinate of the mid-point of AB is also the same as a coordinate point on line l.

So therefore, using the midpoint, (-4, 5) and slope, m = -3, we can generate an equation for line l as follows:

Substitute x = -4, y = 5, and m = -3 into y = mx + b.

5 = (-3)(-4) + b

5 = 12 + b

Subtract 12 from both sides

5 - 12 = b

-7 = b

Substitute m = -3 and b = -7 in y = mx + b to derive the equation:

✅y = -3x + (-7)

y = -3x - 7

yKpoI14uk [10]2 years ago
4 0

Answer:

14. y = -2x -1

15. y = -\frac{3}{4}x +3

16. y= 4x + 9

17. y  = -\frac{5}{3}x -2

18. y= -\frac{2}{3}x -5

19. y = 4x -3

20. y = -3x -7

Step-by-step explanation:

Solving (14):

Given

(x_1,y_1) = (-7,13)

Slope (m) = -2

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 13 = -2(x -(-7))

y - 13 = -2(x +7)

y - 13 = -2x -14

Collect Like Terms

y = -2x -14 + 13

y = -2x -1

Solving (15):

Given

(x_1,y_1) = (-4,6)

Slope (m) = -\frac{3}{4}

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 6 = -\frac{3}{4}(x - (-4))

y - 6 = -\frac{3}{4}(x +4)

y - 6 = -\frac{3}{4}x -3

Collect Like Terms

y = -\frac{3}{4}x -3 + 6

y = -\frac{3}{4}x +3

Solving (16):

Given

(x_1,y_1) = (-5,-11)

(x_2,y_2) = (-2,1)

First, we need to calculate the slope\ (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{1 - (-11)}{-2 - (-5)}

m = \frac{1 +11}{-2 +5}

m = \frac{12}{3}

m = 4

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - (-11) = 4(x -(-5))

y +11 = 4(x+5)

y +11 = 4x+20

Collect Like Terms

y= 4x + 20 - 11

y= 4x + 9

Solving (17):

Given

(x_1,y_1) = (-6,8)

(x_2,y_2) = (3,-7)

First, we need to calculate the slope\ (m)

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{-7 - 8}{3- (-6)}

m = \frac{-7 - 8}{3+6}

m = \frac{-15}{9}

m = -\frac{5}{3}

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - 8 = -\frac{5}{3}(x -(-6))

y - 8 = -\frac{5}{3}(x +6)

y - 8 = -\frac{5}{3}x -10

Collect Like Terms

y  = -\frac{5}{3}x -10 + 8

y  = -\frac{5}{3}x -2

18.

Given

(x_1,y_1) = (-6,-1)

y = -\frac{2}{3}x+1

Since the given point is parallel to the line equation, then the slope of the point is calculated as:

m_1 = m_2

Where m_2 represents the slope

Going by the format of an equation, y = mx + b; by comparison

m = -\frac{2}{3}

and

m_1 = m_2 = -\frac{2}{3}

Equation in slope\ intercept\ form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1

y - (-1) = -\frac{2}{3}(x - (-6))

y +1 = -\frac{2}{3}(x +6)

y +1 = -\frac{2}{3}x -4

y= -\frac{2}{3}x -4 - 1

y= -\frac{2}{3}x -5

19.

Given

(x_1,y_1) = (-2,-11)

y = -\frac{1}{4}x+2

Since the given point is parallel to the line equation, then the slope of the point is calculated as:

m_1 = -\frac{1}{m_2}

Where m_2 represents the slope

Going by the format of an equation, y = mx + b; by comparison

m_2 = -\frac{1}{4}

and

m_1 = -\frac{1}{m_2}

m_1 = -1/\frac{-1}{4}

m_1 = -1*\frac{-4}{1}

m_1 = 4

Equation in slope\ intercept\ form is:

y - y_1 = m(x-x_1)

(x_1,y_1) = (-2,-11)

Substitute values for y1, m and x1

y - (-11) = 4(x - (-2))

y +11 = 4(x +2)

y +11 = 4x +8

Collect Like Terms

y = 4x + 8 - 11

y = 4x -3

20.

Given

(x_1,y_1) = (-10,3)

(x_2,y_2) = (2,7)

First, we need to calculate the slope of the given points

m = \frac{y_2 - y_1}{x_2 - x_1}

m = \frac{7 - 3}{2 - (-10)}

m = \frac{7 - 3}{2 +10}

m = \frac{4}{12}

m = \frac{1}{3}

Next, we determine the slope of the perpendicular bisector using:

m_1 = -\frac{1}{m_2}

m_1 = -1/\frac{1}{3}

m_1 = -3

Next, is to determine the coordinates of the bisector.

To bisect means to divide into equal parts.

So the coordinates of the bisector is the midpoint of the given points;

Midpoint = [\frac{1}{2}(x_1+x_2),\frac{1}{2}(y_1+y_2)]

Midpoint = [\frac{1}{2}(-10+2),\frac{1}{2}(3+7)]

Midpoint = [\frac{1}{2}(-8),\frac{1}{2}(10)]

Midpoint = (-4,5)

So, the coordinates of the midpoint is:

(x_1,y_1) = (-4,5)

Equation in slope- intercept form is:

y - y_1 = m(x-x_1)

Substitute values for y1, m and x1: m_1 = -3 & (x_1,y_1) = (-4,5)

y - 5 = -3(x - (-4))

y - 5 = -3(x +4)

y - 5 = -3x-12

Collect Like Terms

y = -3x - 12 +5

y = -3x -7

You might be interested in
I. Red help pls bros
melamori03 [73]

Answer:

the 3rd one

Step-by-step explanation:

7 0
2 years ago
Read 2 more answers
Hussain and sam are sharing money in the ratio of 2:5 sam got 70p how much money were they sharing in total
Sphinxa [80]

Answer:

if 5=70

  2=?

cross multiply=28

add  70+28=98          

Step-by-step explanation:

4 0
1 year ago
Explain your answer !! <br> Have a nice day <br><br> Will give braisnlt
liubo4ka [24]

Answer:

x=3

y=-4

Step-by-step explanation:

4x+5y=-8 ----------- (1)

-4x-4y=4 -----------(2)

Adding equation (1) and (2)

4x+5y-4x-4y=-8+4

y=-4

Substitute y=-4 in equation (1) or (2)

4x+5(-4)=-8

4x-20=-8\\4x=-8+20\\4x=12\\x=3

8 0
3 years ago
Compute the following volume and surface area.
Sidana [21]
Isssssssssssssssssssssssssssss: 192...............................................that is the correct ansewer aaaaa.........A
5 0
2 years ago
Read 2 more answers
How do you write this into an equation
Rudiy27
The equation is 56.50-19.75/3

3 0
3 years ago
Other questions:
  • Which is equivalent to 49 3/2
    5·1 answer
  • Given f(x) = 17-x^2, what is the average rate of change in f(x) over the interval [1, 5]
    12·1 answer
  • Which is a factor of 54xy+45x+18y+15?<br> a) x-5<br> b)6y+5<br> c)6y+1<br> d)3y+5 ...?
    12·2 answers
  • Solve the equation.<br><br> t-12=3
    10·2 answers
  • manuel wanted to put a brick walkway through his backyard from door to bbq area. the walkway is going to be 6 yards long. so far
    10·1 answer
  • A trencher can be rented for $27 an hour or $145 a day. If you need the trencher for 6 hours, how much money
    13·1 answer
  • Please help me with this
    7·1 answer
  • What is the point slope equation of the line that passes through (9,-1) and has a slope of 5
    14·2 answers
  • Given a2 = 15 and a5= -3,240 of a geometric sequence, what is the recursive equation for the nth term
    5·1 answer
  • mikes deli just sold 328 ham sandwiches this week. around how many ham sandwiches did mike sold every day this week?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!