Magnesium would be more reactive.
We are going to use Avogadro's constant to calculate how many molecules of
carbons dioxide exist in lungs:
when 1 mole of CO2 has 6.02 x 10^23 molecules, so how many molecules in
CO2 when the number of moles is 5 x 10^-2
number of molecules = moles of CO2 * Avogadro's number
= 5 x 10^-2 * 6.02 x 10^23
= 3 x 10^22 molecules
∴ There are 3 x 10^22 molecules in CO2 exist in lungs
Answer:
Yes.
The nuclear equation {226/88 Ra → 222/26 Rn + 4/2 He} is balanced. As we know that an alpha particle is identical to a helium atom. This implies that if an alpha particle is eliminated from an atom's nucleus, an atomic number of 2 and a mass number of 4 is lost.
Therefore, the equation will be reduced to:
226 - 4 = 222
88 - 2 = 86
Hence, the equation is balanced.
Explanation:
For very large numbers, it is much more convenient to use scientific notation. To do this, detect first the position of the decimal point. For whole numbers, the decimal point is place implicitly after the very last digit. Then, move this decimal point to the left until you reach to the last digit. In this case, you moved 8 places until you reach 6.4. Because the number is more than 1, the exponent would have a positive sign. Hence, the scientific notation would be 6.4×10⁸.
Answer:
ΔE = -2661 KJ/mole
ΔH = -2658 KJ/mole
Explanation:
ΔH = q - PΔV
ΔE = q + w
<u>First, to find ΔE:</u>
The reaction PRODUCES 2658 kJ of h (q), and does 3 kJ of work (w).
2658 kJ(q) + 3 kJ(w) = 2661 kJ, BUT the reaction <u><em>PRODUCES</em></u> heat, which means ΔE is negative.
ΔE = -2661 KJ/mole
<u>Second, to find ΔH:</u>
ΔH = q - PΔV
ΔH = 2658 kJ(q) - PΔV
Now, the question states that butane burns at a constant pressure; that just translates to the pressure of the reaction is equal to 0.
ΔH = 2658 KJ(q) - (0)ΔV
ΔH = 2658 KJ - 0
ΔH = 2658 kJ, BUT, like before, the reaction PRODUCES heat, which also mean ΔH is negative.
ΔH = -2658 KJ/mole
I hope this helped! Have a nice week.