In resonance structures, the chemical connectivity in the molecule is same but the distribution of electrons are different around the structure. They are created by moving electrons in double or triple bonds, and not atoms.
Phenol,
and methanol,
both are alcohols that contain an
group attached to carbon atom.
Due to loss of 1
from phenol, it forms phenoxide anion and due to presence of double bond in the benzene ring the negative charge on the oxygen atom (which represents electrons) will resonate with double bonds of benzene ring as shown in the image. The resonance-stabilized phenoxide ion is more stable. Whereas when methanol lose 1
it forms methoxide anion and there are no such electrons present in the structure of methoxide that will result in the movement of electron. Since, due to resonance-stabilized phenoxide ion is more stable than methoxide ion, so it is a stronger acid.
The structures of the anions resulting from loss of 1
from phenol and methanol is shown in the image.
Answer:
Explanation:
water has greater density than ice. so true
Evaporation happens<span> when atoms or </span>molecules<span> escape from the liquid and turn into a vapor. Not all of the </span>molecules in a liquid have the same energy. <span>Sometimes a </span>liquid<span> can be sitting in one place (maybe a puddle) and its molecules will become a </span>gas<span>. That's the process called </span>evaporation<span>. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. You probably remember that when matter has a higher temperature, the molecules have a higher </span>energy<span>. When the energy in specific molecules reaches a certain level, they can have a </span>phase change<span>. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues. </span>
Is it multiple choice or do you just answer
Answer:
[OH-] = 10^-1.5 = 0.0316 M
Explanation: