Solid (ice caps)
Liquid (oceans, rivers, lakes, etc)
Gas (clouds)
Answer: option A. 2
Explanation: in the formula Sr3(PO4)2, the 2 behind (PO4) is affecting both P and O4. It means that we have P2 in the formula
Just add up the molar masses of each element.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
In chemistry the law of multiple proportions states that if two elements from more than one compound between them then the ratios of the masses of the second element which combine with a fixed mass of the first element will always be ratios of small whole numbers .
Answer:

The reactant that is reduced is 
Explanation:
The complete equation is as below:

<em>Recall that oxidation involves the gain of electrons while reduction involves the loss of electrons.</em>
In the above reaction,
loses electrons to coenzyme Q and becomes reduced to FAD, hence the oxidizing agent. Coenzyme Q gains electrons and becomes oxidized to
, hence the reducing agent.
<u>In order words, </u>
<u> is reduced while coenzyme Q is oxidized.</u>