Answer:
d. 8 moles of H2O on the product side
Explanation:
Hello,
In this case, we need to balance the given redox reaction in acidic media as shown below:
![MnO_4^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq) + Cl^{1-} (aq) \rightarrow Mn^{2+} (aq) + Cl_2 (g)\\\\\\\\(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O\\\\2Cl^{1-}\rightarrow Cl_2^0+2e^-\\\\2*[(Mn^{7+}O^{2-}_4)^{1-} (aq)+8H^++5e^- \rightarrow Mn^{2+}+4H_2O]\\\\5*[2Cl^{1-}\rightarrow Cl_2^0+2e^-]\\\\\\\\2(Mn^{7+}O^{2-}_4)^{1-} (aq)+16H^++10e^- \rightarrow 2Mn^{2+}+8H_2O\\\\10Cl^{1-}\rightarrow 5Cl_2^0+10e^-\\](https://tex.z-dn.net/?f=MnO_4%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%20%2B%20Cl%5E%7B1-%7D%20%28aq%29%20%5Crightarrow%20%20Mn%5E%7B2%2B%7D%20%28aq%29%20%2B%20Cl_2%20%28g%29%5C%5C%5C%5C%5C%5C%5C%5C%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5C%5C%5C%5C2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5C%5C%5C%5C2%2A%5B%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B8H%5E%2B%2B5e%5E-%20%5Crightarrow%20Mn%5E%7B2%2B%7D%2B4H_2O%5D%5C%5C%5C%5C5%2A%5B2Cl%5E%7B1-%7D%5Crightarrow%20Cl_2%5E0%2B2e%5E-%5D%5C%5C%5C%5C%5C%5C%5C%5C2%28Mn%5E%7B7%2B%7DO%5E%7B2-%7D_4%29%5E%7B1-%7D%20%28aq%29%2B16H%5E%2B%2B10e%5E-%20%5Crightarrow%202Mn%5E%7B2%2B%7D%2B8H_2O%5C%5C%5C%5C10Cl%5E%7B1-%7D%5Crightarrow%205Cl_2%5E0%2B10e%5E-%5C%5C)
Then, we add the half reactions:

Thereby, we can see d. 8 moles of H2O on the product side.
Best regards.
We can use the atomic model to demonstrate the ways in which scientists
refine and build off each other's findings because of the fact that once
this model was created, it brought with it other models and inventions,
such as the periodic table and other theories about our known universe.
Answer:
The water cycle is driven primarily by the energy from the sun. This solar energy drives the cycle by evaporating water from the oceans, lakes, rivers, and even the soil. Other water moves from plants to the atmosphere through the process of transpiration.
The empirical formula is K₂CO₃.
The empirical formula is the <em>simplest whole-number ratio of atoms</em> in a compound.
The ratio of atoms is the same as the ratio of moles, so our job is to calculate the <em>molar ratio of K:C:O</em>.
I like to summarize the calculations in a table.
<u>Element</u> <u>Moles</u> <u>Ratio</u>¹ <u>Integers</u>²
K 0.104 2.00 2
C 0.052 1.00 1
O 0.156 3.00 3
¹ To get the molar ratio, you divide each number of moles by the smallest number.
² Round off the number in the ratio to integers to integers (2, 1, and 3).
The empirical formula is K₂CO₃.