The question looks incomplete, but according to the information given above seem like they have <span>identical journeys.
</span>a. the displacement of car A - <span> 65.5 m
</span>b. the displacement of car B - <span>65.5 m
c. average velocir</span>y of A

d. the average velocity of car B has the same.
Answer:
The angular velocity is
5.64rad/s
Explanation:
This problem bothers on curvilinear motion
The angular velocity is defined as the rate of change of angular displacement it is expressed in rad/s
We know that the velocity v is given as
v= ωr
Where ω is the angular velocity
r is 300mm to meter = 0.3m
the radius of the circle
described by the level
v=1.64m/s
Making ω subject of the formula and solving we have
ω=v/r
ω=1.64/0.3
ω=5.46 rad/s
To develop this problem it is necessary to apply the concepts related to a magnetic field in spheres.
By definition we know that the magnetic field in a sphere can be described as

Where,
a = Radius
z = Distance to the magnetic field
I = Current
Permeability constant in free space
Our values are given as
diameter of the sphere then,

Thus z = a



Re-arrange to find I,



Therefore the current at the pole of this sphere is 
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 