"(1) a satellite moving around Earth in a circular <span>orbit" is the only option from the list that describes an object in equilibrium, since velocity and gravity are working together to keep the orbit constant. </span>
Answer:
solution:
dT/dx =T2-T1/L
&
q_x = -k*(dT/dx)
<u>Case (1) </u>
dT/dx= (-20-50)/0.35==> -280 K/m
q_x =-50*(-280)*10^3==>14 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (2)
dT/dx= (-10+30)/0.35==> 80 K/m
q_x =-50*(80)*10^3==>-4 kW
Case (3)
q_x =-50*(160)*10^3==>-8 kW
T2=T1+dT/dx*L=70+160*0.25==> 110° C
Case (4)
q_x =-50*(-80)*10^3==>4 kW
T1=T2-dT/dx*L=40+80*0.25==> 60° C
Case (5)
q_x =-50*(200)*10^3==>-10 kW
T1=T2-dT/dx*L=30-200*0.25==> -20° C
note:
all graph are attached
Winds blowing across the ocean surface push water away. Water then rises up from beneath the surface to replace the water that was pushed away. This process is known as “upwelling.”
Upwelling occurs in the open ocean and along coastlines. The reverse process, called “downwelling,” also occurs when wind causes surface water to build up along a coastline and the surface water eventually sinks toward the bottom.
Water that rises to the surface as a result of upwelling is typically colder and is rich in nutrients. These nutrients “fertilize” surface waters, meaning that these surface waters often have high biological productivity. Therefore, good fishing grounds typically are found where upwelling is common.
Answer:
v1=18.46m/s
v2=29.8cm/s
Explanation:
We know that

the equation of the motion is

we can calculate w by using

Hence, we have that

the speed will be

hope this helps!
Answer:
3.5 hours
Explanation:
Speed = distance/time
Let the distance that Fiora biked at 20 mi/h through be x miles and the time it took her to bike through that distance be t hours at 20 mi/h
Then, the rest of the distance that she biked at 14 mi/h is (112 - x) miles
And the time she spent biking at 14 mi/h the rest of the distance = (6.5 - t) hours
Her first biking speed = 20 mph = 20 miles/hour
Speed = distance/time
20 = x/t
x = 20 t (eqn 1)
Her second biking speed = 14 mph = 14 miles/hour
14 = (112 - x)/(6.5 - t)
112 - x = 14 (6.5 - t)
112 - x = 91 - 14t (eqn 2)
Substitute for x in (eqn 2)
112 - 20t = 91 - 14t
20t - 14t = 112 - 91
6t = 21
t = 3.5 hours
x = 20t = 20 × 3.5 = 70 miles.
(112 - x) = 112 - 70 = 42 miles
(6.5 - t) = 6.5 - 3.5 = 3 hours
Meaning that she travelled at 20 mi/h for 3.5 hours.