It will stay the same. Electric force decreases with distance but increases with magnitude of charge. By doubling them both, they essentially cancel out and nothing changes
CORRECT ANSWER:
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
STEP-BY-STEP EXPLANATION:
The complete question from book is
According to Figure 9.6, what is a key difference between cell signaling by a cell-surface receptor and cell signaling by an intracellular receptor?
a- Cell-surface receptors bind polar signaling molecules; intracellular receptors bind nonpolar signaling molecules.
b- Signaling molecules that bind to cell-surface receptors lead to cellular responses restricted to the cytoplasm; signaling molecules that bind to intracellular receptors lead to cellular responses restricted to the nucleus.
c- Cell-surface receptors bind to specific signaling molecules; intracellular receptors bind any signaling molecule.
d- Cell-surface receptors typically bind to signaling molecules that are smaller than those bound by intracellular receptors.
e- None of the other answer options is correct.
Answer:
51.2 J, 86.2 J, 137.4 J
Explanation:
The kinetic energy of the ball is given by:

where
m = 0.40 kg is its mass
v = 16 m/s is its speed
Substituting,

The potential energy of the ball is given by

where
m = 0.40 kg
is the acceleration of gravity
h = 22 m is the heigth of the cliff
Substituting,

Finally, the total mechanical energy is the sum of the kinetic energy and the potential energy:

Answer:
The acceleration of the mass is 2 meters per square second.
Explanation:
By Newton's second law, we know that force (
), measured in newtons, is the product of mass (
), measured in kilograms, and net acceleration (
), measured in meters per square second. That is:
(1)
The initial force applied in the mass is:


In addition, we know that force is directly proportional to acceleration. If the smaller force is removed, then the initial force is reduced to
of the initial force. The acceleration of the mass is:


The acceleration of the mass is 2 meters per square second.