Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below
Answer:
The volume of copper is 2.198 ml
Explanation:
Given;
mass of copper, m = 20 g
density of copper, ρ = 9.1 g/ml
Density is given by;
Density = mass / volume
Volume = mass / density
Volume = (20 g) / (9.1 g/ml)
Volume = 2.198 ml
Therefore, the volume of copper is 2.198 ml
Answer:
✓ Ion
Explanation:
Which term BEST describes the form of beryllium shown? Protons=4 Neutrons=5 Electrons=2
✓ Ion
To solve this problem we will apply the concepts related to the conservation of kinetic energy and elastic potential energy. Thus we will have that the kinetic energy is

And the potential energy is

Here,
m = mass
v = Velocity
x = Displacement
k = Spring constant
There is equilibrium, then,
KE = PE

Our values are given as,

Replacing we have that


Therefore the speed of the cart is 2.19m/s