Explanation:
The given data is as follows.
Angular velocity () = 2.23 rps
Distance from the center (R) = 0.379 m
First, we will convert revolutions per second into radian per second as follows.
= 2.23 revolutions per second
=
= 14.01 rad/s
Now, tangential speed will be calculated as follows.
Tangential speed, v =
= 0.379 x 14.01
= 5.31 m/s
Thus, we can conclude that the tack's tangential speed is 5.31 m/s.
Answer:
a) A=0.125 m
b) T = 1.72 s
c) f= 0.58 Hz
Explanation:
a) As we are told that the maximum displacement from the equilibrium position was 0.125 m (from which it was released at zero initial speed), this is the amplitude of the resultant SHM, so, A=0.125 m
b) In order to find the period, we must get the total time needed to complete a full cycle (which means that the block must pass twice through the equilibrium point). We are told that at t=0.860 sec, the block has reached to the other end of the trajectory, and it has passed through the equilibrium point only once.
This means that the period must be exactly the double of this time:
T = 2*0. 860 sec = 1.72 sec.
c) In a SHM, the frequency is defined just as the inverse of the period (like in a uniform circular movement), so we can get the frequency f as follows:
f = 1/T = 1/ 1.72 s= 0.58 Hz
Answer: Find an answer to your question given A=125.0=0.4 and 25.0=0.1 calculate A-B
Explanation:
Cznxjsjssbsishsisbsisbsisbsbeoeb
Answer:
Explanation:
Newton's first law of motion states that an object in motion stays in motion. The orange is moving and then the tray stops making the orange move forward because of inertia.