Compute successive differences of the terms.
If they are all the same, the sequence is arithmetic and the common difference is the difference you have found.
If successive pairs of differences have the same ratio, the sequence is geometric and the common ratio is the ratio you have determined.
Example of arithmetic sequence:
1, 3, 5, 7
Successive differences are 3-1 = 2, 5-3 = 2, 7-5 = 2. All the differences are 2, which is the common difference of the sequence.
Example of geometric sequence:
1, -3, 9, -27
Successive differences are -3-1 = -4, 9-(-3) = 12, -27-9 = -36. These are not the same, so the sequence is not arithmetic. Ratios of successive pairs of differences are 12/-4 = -3, -36/12 = -3. These are the same, so the sequence is geometric with common ratio -3.
Answer:
5.
Step-by-step explanation:
Use a proportion.
Answer:
2-9=x
HOW
let the number be x
then 2 less than product 9
so
2-9
and a number
we don,t know number so take it x
so 2-9=x
HETY is a parallelogram.
HT and EY are diagonals. We know that diagonals divides the parallelogram into two equal parts.
So ar(HET) = ar(HTY)
And, ar(HEY) = ar(EYT) now, in AHET, diagonal EY bisects the line segment HT and also the AHET,
∴ar(AHOE) = ar(AEOT)
Similarly in AETY
ar(ΔΕΟΤ) = ar(ΔΤΟΥ)
And in AHTY,
ar(ATOY) = ar(AHOY)
That means diagonals in parallelogram divides it into four equal parts.
Hence Proofed.