If your just figuring out how much the car depreciated just by driving off the lot new...1st year.
$30,000×.30=$9,000
$30,000- $9,000=$21,000.
just take the brand new value of the car multiplied by the .30% of the 1st depreciation...take that answer ($9,000) and subtract it from your orginal value of $31,000.
which gives you $21,000
Answer:
![x=-2,0,3](https://tex.z-dn.net/?f=x%3D-2%2C0%2C3)
Step-by-step explanation:
We have been given a function
. We are asked to find the zeros of our given function.
To find the zeros of our given function, we will equate our given function by 0 as shown below:
![15x^3-15x^2-90x=0](https://tex.z-dn.net/?f=15x%5E3-15x%5E2-90x%3D0)
Now, we will factor our equation. We can see that all terms of our equation a common factor that is
.
Upon factoring out
, we will get:
![15x(x^2-x-6)=0](https://tex.z-dn.net/?f=15x%28x%5E2-x-6%29%3D0)
Now, we will split the middle term of our equation into parts, whose sum is
and whose product is
. We know such two numbers are
.
![15x(x^2-3x+2x-6)=0](https://tex.z-dn.net/?f=15x%28x%5E2-3x%2B2x-6%29%3D0)
![15x((x^2-3x)+(2x-6))=0](https://tex.z-dn.net/?f=15x%28%28x%5E2-3x%29%2B%282x-6%29%29%3D0)
![15x(x(x-3)+2(x-3))=0](https://tex.z-dn.net/?f=15x%28x%28x-3%29%2B2%28x-3%29%29%3D0)
![15x(x-3)(x+2)=0](https://tex.z-dn.net/?f=15x%28x-3%29%28x%2B2%29%3D0)
Now, we will use zero product property to find the zeros of our given function.
![15x=0\text{ (or) }(x-3)=0\text{ (or) }(x+2)=0](https://tex.z-dn.net/?f=15x%3D0%5Ctext%7B%20%28or%29%20%7D%28x-3%29%3D0%5Ctext%7B%20%28or%29%20%7D%28x%2B2%29%3D0)
![15x=0\text{ (or) }x-3=0\text{ (or) }x+2=0](https://tex.z-dn.net/?f=15x%3D0%5Ctext%7B%20%28or%29%20%7Dx-3%3D0%5Ctext%7B%20%28or%29%20%7Dx%2B2%3D0)
![\frac{15x}{15}=\frac{0}{15}\text{ (or) }x-3=0\text{ (or) }x+2=0](https://tex.z-dn.net/?f=%5Cfrac%7B15x%7D%7B15%7D%3D%5Cfrac%7B0%7D%7B15%7D%5Ctext%7B%20%28or%29%20%7Dx-3%3D0%5Ctext%7B%20%28or%29%20%7Dx%2B2%3D0)
![x=0\text{ (or) }x=3\text{ (or) }x=-2](https://tex.z-dn.net/?f=x%3D0%5Ctext%7B%20%28or%29%20%7Dx%3D3%5Ctext%7B%20%28or%29%20%7Dx%3D-2)
Therefore, the zeros of our given function are
.
⇒ s = a+b+c2=5+12+132 a + b + c 2 = 5 + 12 + 13 2 = 15 cm.
Area of the base = √s(s−a)(s−b)(s−c)
= √15×10×3×2 15 × 10 × 3 × 2 cm2 = 30 cm2
Answer:
A.
Step-by-step explanation:
I think it makes the most sense sorry if i got it wrong