1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
abruzzese [7]
3 years ago
14

Find out the Range coefficient of the range

Mathematics
1 answer:
Alex777 [14]3 years ago
7 0

Answer:

0.4494

Step-by-step explanation:

Given :

marks number of students

20-29 8

30-39 12

40-49 20

50-59 7

60-69 3​

The range Coefficient is obtained thus :

Range Coefficient = (Xm - Xl) / (Xm + Xl)

Where ;

Xm = Mid value of highest class = (60+69)/2 = 64.5

Xl = Mid value of lowest class = (20+29)/2 = 24.5

Range Coefficient = (64.5 - 24.5) / (64.5 + 24.5)

Range Coefficient = 40 / 89 = 0.4494

You might be interested in
The diagonal of a square is 12 inches. What is the perimeter of the square?
BartSMP [9]

Answer:

P≈33.94in

Step-by-step explanation:

Hope this helps

4 0
3 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Thanks for not answering, I got it wrong
Eva8 [605]

B should be the answer or D

3 0
3 years ago
Read 2 more answers
Find how many centimeters are in 4.5 inches, you should
Inessa05 [86]

Answer:

4.5in=11.43cm

Step-by-step explanation:

4.5*2.54=11.43

3 0
3 years ago
Read 2 more answers
Find the slope of the line on the graph write your answer as a fraction or a whole number not a mixed number or decimal.
Scorpion4ik [409]

Answer: 1

Step-by-step explanation:

Change in y/change in x

starting at y intercept. up 1 unit (change in y) and over 1 unit (change in x) to get to next point on line.

slope is 1/1 which reduces to 1.

3 0
3 years ago
Read 2 more answers
Other questions:
  • How many
    13·1 answer
  • If a 12 - sided regular polygon rotates about its center, at which angle of rotation will the image of the polygon coincide with
    11·1 answer
  • What is the square root of 78
    8·2 answers
  • 3 men painting a house take 7's
    9·1 answer
  • Plsssssss helppppppp!!!!!!!<br><br> I WILL AWARD BRAINLIEST!!!!!
    6·1 answer
  • Jackie jogs from 11:27 AM until 12:09 PM. For about how long does Jackie jog?
    6·1 answer
  • What is the solution to the system of equations
    10·2 answers
  • Which of the following has the same value as 1/1000 20 points if right
    7·2 answers
  • How do I solve this?
    7·1 answer
  • Analyze the diagram to answer the questions.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!