Answer:
Following are the solution to these question:
Explanation:
Calculating the mean:


Calculating the standardn:

Please find the correct equation in the attached file.

For point a:

For point b:

For point c:

It is calculated by using the slope value that is
. The slope value
is ambiguous.
Explanation:
A reaction quotient is defined as the ratio of concentration of products over reactants raised to the power of their stoichiometric coefficients.
A reaction quotient is denoted by the symbol Q.
For example, 
The reaction quotient for this reaction is as follows.
Q = ![\frac{[Fe^{2+}]^{2}[Zn^{2+}]}{[Fe^{3+}]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BFe%5E%7B2%2B%7D%5D%5E%7B2%7D%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BFe%5E%7B3%2B%7D%5D%5E%7B2%7D%7D)
[Zn] will be equal to 1 as it is present in solid state. Therefore, we don't need to write it in the reaction quotient expression.
Answer:

Explanation:
You don't give the reaction, but we can get by just by balancing atoms of Na.
We know we will need the partially balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
M_r: 142.04
2NaOH + … ⟶ Na₂SO₄ + …
n/mol: 0.75
1. Use the molar ratio of Na₂SO₄ to NaOH to calculate the moles of NaF.
Moles of Na₂SO₄ = 0.75 mol NaOH × (1 mol Na₂SO₄/2 mol NaOH
= 0.375 mol Na₂SO₄
2. Use the molar mass of Na₂SO₄ to calculate the mass of Na₂SO₄.
Mass of Na₂SO₄ = 0.375 mol Na₂SO₄ × (142.04 g Na₂SO₄/1 mol Na₂SO₄) = 53 g Na₂SO₄
The reaction produces
of Na₂SO₄.
The correct answer is b hope this helps air