Answer:
0.0984mol of F2
Explanation:
The equation for the reaction is given below:
Kr + F2 → KrF2
Let us convert 12g of KrF2 to mole. This is illustrated below
Molar Mass of KrF2 = 84 + (2x19) = 84 + 38 = 122g/mol
Mass of KrF2 = 12g
Number of mole = Mass /Molar Mass
Number of mole of KrF2 = 12/122 = 0.0984mol
From the equation,
1mole of F2 produced 1mole of KrF2.
Therefore 0.0984mol of F2 will produce 0.0984mol of KrF2
I'm not completely sure on this and I apologize if it's wrong, but I believe it's B) Newton's Law.
Answer and Explanation:
Because metallic bonding involves delocalized electrons. It is described as a "<em>sea of electrons</em>", because the electrons are not confined around the nucleus of metal atoms, but they are delocalized: thay can be located in one nucleus and then in another neighbor atom. Thus, the electrons have more freedom to move from one part of the metal to another and electricity is well conducted.
Answer:
28.01g
Explanation:
Given the weight of one mole of Cabon as 12.01g and that of oxygen as 16.00g.
The molecular weight of a compound can be gotten by adding the molar weights of the elements that constitutes the compound .
The molecular weight of the compound CO is therefore
equal to the sum of the weight of both elements.
That’s = 12.01g + 16.00g
= 28.01g
Therefore, the molecular weight of CO is 28.01g