Potential energy decreases and kinetic energy increases.
Potential energy is related to the height, since the wagon is going downhill, height decreases and potential energy decreases.
Kinetic energy is related to the speed, since the wagon is speeding up, kinetic energy increases.
Answer:
The skater has mechanical/gravitational potential energy at the two meter mark. The skater gets to two meters high on the other end of the ramp. In terms of the conservation of energy, the skater will never go higher than two meter on the other end of the the ramp because energy can be neither created nor destroyed.
Explanation:
I hoping it is right!!!∪∧∪ ∪ω∪
The temperature of the substance giving off the heat decreases while the temperature of the substance receilving the heat increases. they leach what is called equlibrium point where heat energy can longer be exchanged hence equql temperature. this isThermal physics
To solve this problem we will use the relationship given between the centripetal Force and the Force caused by the weight, with respect to the horizontal and vertical components of the total tension given.
The tension in the vertical plane will be equivalent to the centripetal force therefore

Here,
m = mass
v = Velocity
r = Radius
The tension in the horizontal plane will be subject to the action of the weight, therefore

Matching both expressions with respect to the tension we will have to


Then we have that,


Rearranging to find the velocity we have that

The value of the angle is 14.5°, the acceleration (g) is 9.8m/s^2 and the radius is



Replacing we have that


Therefore the speed of each seat is 4.492m/s
Answer:
Answer is A, it will pass through to focal point after reflecting.
Explanation:
I had the same question in a test, Sorry that you had to do this question in middle school.