Answer:
The answer to your question is:
a) t1 = 2.99 s ≈ 3 s
b) vf = 39.43 m/s
Explanation:
Data
vo = 10 m/s
h = 74 m
g = 9.81 m/s
t = ? time to reach the ground
vf = ? final speed
a) h = vot + (1/2)gt²
74 = 10t + (1/2)9.81t²
4.9t² + 10t -74 = 0 solve by using quadratic formula
t = (-b ± √ (b² -4ac) / 2a
t = (-10 ± √ (10² -4(4.9(-74) / 2(4.9)
t = (-10 ± √ 1550.4 ) / 9.81
t1 = (-10 + √ 1550.4 ) / 9.81 t2 = (-10 - √ 1550.4 ) / 9.81
t1 = (-10 ± 39.38 ) / 9.81 t2 = (-10 - 39.38) / 9.81
t1 = 2.99 s ≈ 3 s t2 = is negative then is wrong there are
no negative times.
b) Formula vf = vo + gt
vf = 10 + (9.81)(3)
vf = 10 + 29.43
vf = 39.43 m/s
Answer:According to the Equation (2), centripetal force is proportional to the square of the speed for an object of given mass M rotating in a given radius R.
Explanation:The Period T. The time T required for one complete revolution is called the period. For. constant speed. v = 2π r T holds.
Answer:
1.122 m/s
Explanation:
So usually a river with a speed of 1 meters per second can transport particle that weighs:

If the particle is twice as massive as usual, then its weights would be 1 * 2 = 2kg
This means the river must be flowing at a speed of

Answer:
minimum thickness of the coating = 122.868 nm
Explanation:
Given data
lens index of refraction = 1.29
wavelength = 634 nm
glass index of refraction = 1.53
to find out
minimum thickness of the coating
solution
we have given non reflective coating
so
we know that minimum thickness of the coating formula
minimum thickness of the coating = Wavelength / 4n
here n is coating index of refraction
so put here both value to get thickness
minimum thickness of the coating = Wavelength / 4n
minimum thickness of the coating = 634 / 4 ( 1.29 )
so minimum thickness of the coating = 122.868 nm