Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency 
Velocity of the string wave is equal to 
Power of wave propagation is equal to 
So power of the wave will be equal to 5.464 watt
Answer:
The value of third charge is 0.8μC.
Explanation:
Given that.
Magnitude of net force=4.444 N
According to figure,
Suppose, First charge = 2.4 μC
Second charge = 6.2 μC
Distance r₁ = 9.8 cm
Distance r₂ = 2.1 cm
We need to calculate the value of r
Using Pythagorean theorem

Put the value into the formula


We need to calculate the force
Using formula of force

Force F₁₂,



Force F₂₃,

We need to calculate the value of third charge





Hence, The value of third charge is 0.8μC.
It’s C
solar
correct me if i’m wrong though
Answer:
Because weight W = M g, the ratio of weights equals the ratio of masses.
(M_m g)/ (M_w g) = [ (p^2 Man )/ (2 K_man)] / [ (p^2 Woman )/ (2 K_woman)
but p's are equal, so
K_m/K_m = (M_w g)/(M_m g) = W_woman / W_man = 450/680 = 0.662Explanation:
Answer:
Equal Densities
Explanation:
if the density of the object was greater than that of the liquid, it would sink to the bottom. if the density od the object was lesser than the liquid, it would float :)