The transit method requires watching the light output of a star over long periods of time. A transit occurs when the planet crosses in front of its star from earths point of view. Since there is a small object (the planet) now blocking some of the star, it appears to dim a little bit for a while until the planet passes. If we are in a position where that occurs regularly (most paths of planets do not happen to be on the line of sight between earth and their star) we can deduce the period of orbit. From the amount of dimming and the period you can estimate the mass
Both don’t have units beacuse they are ratios
consider the motion along the horizontal direction :
v₀ = initial velocity in horizontal direction as the ball rolls off the table = 3.0 m/s
X = horizontal displacement of the ball = 2.0 m
a = acceleration along the horizontal direction = 0 m/s²
t = time taken to land = ?
using the kinematics equation
X = v₀ t + (0.5) a t²
2.0 = 3.0 t + (0.5) (0) t²
t = 2/3
consider the motion of the ball along the vertical direction
v₀ = initial velocity in vertical direction as the ball rolls off the table = 0 m/s
Y = vertical displacement of the ball = height of the table = h
a = acceleration along the vertical direction = 9.8 m/s²
t = time taken to land = 2/3
using the kinematics equation
Y = v₀ t + (0.5) a t²
h = 0 t + (0.5) (9.8) (2/3)²
h = 2.2 m
C 2.2 m
You have not provided the diagram, therefore, I cannot provide an exact answer.
However, I will try to help by explaining how to solve this problem.
When light moves from air to glass:1- part of the light is reflected back into the air where the angle of incidence is equal to the angle of reflection
2- part of the light enters the water and refracts. The angle of refraction can be calculated using Snell's law.
In a diagram, the reflected ray would be the one getting back into air while the refracted ray would be the one entering the water.
You can check the attached diagram for further illustrations.
Hope this helps :)
Answer:
5.15348 Beats/s
4.55 mm
Explanation:
= Velocity of sound = 342 m/s
= Velocity of sound = 346 m/s
= First frequency = 440 Hz
Frequency is given by

Beat frequency is given by

Beat frequency is 5.15348 Hz
Wavelength is given by

Relation between length of the flute and wavelength is

At v = 346 m/s


Difference in length is

It extends to 4.55 mm