Answer:
A. 
B. P ≈ 0
Explanation:
In order to calculate the magnetic field strength we have to use the magnetic field strength of a straight wire.
(eq. I)
B = magnetic field strength at distance d
I = current (A)
mi = represented by the greek letter μ, represents the permeability of the free space, which is: 4 × π 10^(-7) T m/A
d = distance from the wire
By replacing the values in eq I, we have the following:
(eq II)
The earth magnetic field in the surface variates from 25 to 65 microteslas. Thus:
P = Percentage from the wires/percentage of the earth
∵
∴
P ≈ 0
Answer:
x(t) = ⅟₁₀₈t⁴ + 10t + 24
v(t) = ⅟₂₇t³ + 10
Explanation:
a(t) = C₁t²
velocity is the integral of acceleration
v(t) = ⅓C₁t³ + C₂
position is the integral of velocity
x(t) = (⅟₁₂C₁)t⁴ + C₂t + C₃
x(0) = 24 = (⅟₁₂C₁)0⁴ + C₂0 + C₃
C₃ = 24
x(6) = 96 = (⅟₁₂C₁)6⁴ + C₂6 + 24
72 = 108C₁ + 6C₂
C₂ = 12 - 18C₁
v(6) = 18 = ⅓C₁6³ + C₂
18 = 72C₁ + C₂
18 = 72C₁ + (12 - 18C₁)
6 = 54C₁
C₁ = 1/9
C₂ = 12 - 18(1/9)
C₂ = 10
The answer to this question is D or the last one
Answer:
The fourth graph is the answer
Explanation:
We have inequalities


For the first inequality all points at or below the graph of y are solutions, and for the second inequality all the points above the graph of y are the solutions. So, the solution to these inequalities are points that are above the graph of
and below the graph of
. The shaded region in the fourth graph satisfies these conditions.
<em>Looking at other choices, we see that the first two graphs do not even represent the graphs of our inequalities, and the third graph does represent the inequalities but shades the wrong region. </em>
P.S: the graph of the inequality
is dashed because
is "greater than" and not "equal to"
, so this indicates that the values on the line
are not included. And the graph of the inequality
is a solid line because
is "less than or equal to"
, so we are including the values on the line
, and that's why it's solid.
The distance that the rubber ducks traveled = 1600 miles.
The time taken to travel this distance = 10 months.
By definition, the approximate average speed of the ocean is
v = (1600 miles)/(10 months)
Note that
1 mile = 1609 m
10 months = (10 months)*(30 days/month) *(24 hours/day)
= 7200 hours (approx.)
= 7200*3600 = 2.592 x 10⁷ s
Therefore

Also,

Answer:
The average velocity is approximately 0.1 m/s, or 0.222 m/h.