Particles vibrate parallel to the direction the sound travels. It's a longitudinal wave.
The answer is D.
Velocity is the speed in a particular direction.
Saying that you are going from Los Angeles to Catalina Island is not a particular direction, it is an end destination.
Answer: 0.45
Explanation:
First note that the body that causes the body to move is its moving force (Fm) which is 9.0N
Since the mass of the body is 2.0kg, the weight will be;
W= mg = 2×10
W= 20N
For static body, the frictional force (Ff) acting on the body is equal to the moving force (Fm) since both forces acts along the horizontal on the body.
Ff = Fm = 9.0N
The normal reaction (R) on the body will also be equal to its weight(W) since weight acts downwards and the reaction acts in the opposite direction (upwards).
R = W = 20N
Ff = nR taking 'n' as coefficient of static friction between the drawer and the cabinet.
9.0 = 20n
n = 9/20
n = 0.45
The force needed to the stop the car is -3.79 N.
Explanation:
The force required to stop the car should have equal magnitude as the force required to move the car but in opposite direction. This is in accordance with the Newton's third law of motion. Since, in the present problem, we know the kinetic energy and velocity of the moving car, we can determine the mass of the car from these two parameters.
So, here v = 30 m/s and k.E. = 3.6 × 10⁵ J, then mass will be

Now, we know that the work done by the brake to stop the car will be equal to the product of force to stop the car with the distance travelled by the car on applying the brake.Here it is said that the car travels 95 m after the brake has been applied. So with the help of work energy theorem,
Work done = Final kinetic energy - Initial kinetic energy
Work done = Force × Displacement
So, Force × Displacement = Final kinetic energy - Initial Kinetic energy.

Thus, the force needed to the stop the car is -3.79 N.
Answer:
5.74s
Explanation:
We can first solve for the initial angular velocity using the following formula

Where
is the final angular velocity,
is the angular acceleration and
is the angular displacement



So for the wheel to get from 22.4 to -22.4 with angular acceleration of -7.8 then the time it takes must be
