Answer:
the first one
Step-by-step explanation:
Answer:
its gos up
Step-by-step explanation:
think it's not hard
Answer:
x=0.333
Step-by-step explanation:
12(3x)=12
36x=12
/36 on both sides
x=0.333
The value of x is
.
Solution:
Given expression is
.
Switch both sides.
![8-3 \sqrt[5]{x^{3}}=-7](https://tex.z-dn.net/?f=8-3%20%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D%3D-7)
Subtract 8 from both side of the equation.
![8-3 \sqrt[5]{x^{3}}-8=-7-8](https://tex.z-dn.net/?f=8-3%20%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D-8%3D-7-8)
![-3 \sqrt[5]{x^{3}}=-15](https://tex.z-dn.net/?f=-3%20%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D%3D-15)
Divide by –3 on both side of the equation.
![$\frac{-3 \sqrt[5]{x^{3}}}{-3} =\frac{-15}{-3}](https://tex.z-dn.net/?f=%24%5Cfrac%7B-3%20%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D%7D%7B-3%7D%20%3D%5Cfrac%7B-15%7D%7B-3%7D)
![\sqrt[5]{x^{3}}=-5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D%3D-5)
To cancel the cube root, raise the power 5 on both sides.
![(\sqrt[5]{x^{3}})^5=(-5)^5](https://tex.z-dn.net/?f=%28%5Csqrt%5B5%5D%7Bx%5E%7B3%7D%7D%29%5E5%3D%28-5%29%5E5)

To find the value of x, take square root on both sides.
![\sqrt[3]{x^3}=\sqrt[3]{25}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%5E3%7D%3D%5Csqrt%5B3%5D%7B25%7D)
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Hence the value of x is
.
Answer:
Domain = R- {0,4}
Step-by-step explanation:




In order to function (f*g)x to be defined , the Denominator must not be equal to zero.
Hence
x ≠ 0
(x-4) ≠ 0 ⇒ x≠4
Hence (f*g)x is defined for all values of x except 0 and 4
Hence Domain = R- {0,4}