You could simplify this work by factoring "3" out of all four terms, as follows:
3(x^2 + 2x - 3) =3(0) = 0
Hold the 3 for later re-insertion. Focus on "completing the square" of x^2 + 2x - 3.
1. Take the coefficient (2) of x and halve it: 2 divided by 2 is 1
2. Square this result: 1^2 = 1
3. Add this result (1) to x^2 + 2x, holding the "-3" for later:
x^2 +2x
4 Subtract (1) from x^2 + 2x + 1: x^2 + 2x + 1 -3 -1 = 0,
or x^2 + 2x + 1 - 4 = 0
5. Simplify, remembering that x^2 + 2x + 1 is a perfect square:
(x+1)^2 - 4 = 0
We have "completed the square." We can stop here. or, we could solve for x: one way would be to factor the left side:
[(x+1)-2][(x+1)+2]=0 The solutions would then be:
x+1-2=0=> x-1=0, or x=1, and
x+1 +2 = 0 => x+3=0, or x=-3. (you were not asked to do this).
100. This is very easy thanks teacher
The area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
<h3>Determining the perimeter and area of the triangle giving line equation</h3>
In order to determine the area and perimeter of the lines, we will plot the giving lines, determine the point of intersection and then use the Pythagoras theorem to determine the dimension of the right triangle.
The points of intersection of the line are;
(x₁, y₁) = (- 0.4, 5.2),
(x₂, y₂) = (-0.8, 4.4),
(x₃, y₃) = (0, 4)
Determine the base
b² = c² -a²
b = √(-0.8)² + (4 - 4.4)²
b = 2√5 / 5
Determine the height
h = √((- 0.4) - (- 0.8))² + (5.2 - 4.4)²
height = 2√5 / 5
For the hypotenuse
r = √2 · b
r = 2√10 / 5
<h3>Determine the Perimeter and area</h3>
Perimeter = s1+s2+s3
Perimeter = 2√5 / 5 + 2√5 / 5 + 2√10 / 5
Perimeter = (2√10 + 4√5) / 5 units
<u>For the area</u>
area = 1/2* base * height
A = 0.5 · (2√5 / 5) · (2√5 / 5)
A = 2/5 square units
Hence the area and perimeter of the triangle is 2/5 square units and (2√10 + 4√5) / 5 units
Learn more on area and perimeter of triangles here: brainly.com/question/12010318
#SPJ1
Answer:
+73 yards.
Step-by-step explanation:
Since we have the first two quarters, we can simply work out the yardage for each game and add them together to get the total.
42-9 = 33 (first game)
58-18 = 40 (second game)
Therefore his total yardage was +73.
The picture is too blurry for me even when I try zooming in on it