Answer:
C. It has a higher frequency than that of the original waves.
Explanation:
Answer:
C. Car A
Explanation:
if the answer is: which roller coaster car has the greatest potential energy due to gravity brainly
Answer:
The ratio is KE : TM = 0.75
Explanation:
from the question we are told that
The displacement of a mass on a spring in simple harmonic motion is A/2 from the equilibrium position
Generally the total mechanical energy of the mass is mathematically represented as
Here k is the spring constant , A is the total displacement of the the mass from maximum compression to maximum extension of the spring
Generally this total mechanical energy is mathematically represented as
=>
Here the potential energy of the mass is mathematically represented as
Here x is the displacement of the mass from maximum compression or extension of the spring to equilibrium position and the value is
So
So
=>
=>
So the ratio of is mathematically represented as
=>
Answer: 0.5 m/s
Explanation:
Given
Speed of the sled, v = 0.55 m/s
Total mass, m = 96.5 kg
Mass of the rock, m1 = 0.3 kg
Speed of the rock, v1 = 17.5 m/s
To solve this, we would use the law of conservation of momentum
Momentum before throwing the rock: m*V = 96.5 kg * 0.550 m/s = 53.08 Ns
When the man throws the rock forward
rock:
m1 = 0.300 kg
V1 = 17.5 m/s, in the same direction of the sled with the man
m2 = 96.5 kg - 0.300 kg = 96.2 kg
v2 = ?
Law of conservation of momentum states that the momentum is equal before and after the throw.
momentum before throw = momentum after throw
53.08 = 0.300 * 17.5 + 96.2 * v2
53.08 = 5.25 + 96.2 * v2
v2 = [53.08 - 5.25 ] / 96.2
v2 = 47.83 / 96.2
v2 = 0.497 ~= 0.50 m/s
Answer:
13807.2 J/g°C
Explanation:
I just took the test and got it correct