Answer:
P = 4000 [Pa]
Explanation:
Pressure is defined as the relationship between Force and the area where the body rests.
The support area is equal to:
![A=50*20=1000[cm^{2} ]](https://tex.z-dn.net/?f=A%3D50%2A20%3D1000%5Bcm%5E%7B2%7D%20%5D)
But we must convert from square centimeters to square meters.
![1000[cm^{2}]*\frac{1^{2}m^{2} }{100^{2}m^{2} }=0.1[m^{2} ]](https://tex.z-dn.net/?f=1000%5Bcm%5E%7B2%7D%5D%2A%5Cfrac%7B1%5E%7B2%7Dm%5E%7B2%7D%20%20%7D%7B100%5E%7B2%7Dm%5E%7B2%7D%20%20%7D%3D0.1%5Bm%5E%7B2%7D%20%5D)
And the pressure is:
![P=\frac{F}{A} \\P=400/0.1\\P=4000[N/m^{2} ]or 4000[Pa]](https://tex.z-dn.net/?f=P%3D%5Cfrac%7BF%7D%7BA%7D%20%5C%5CP%3D400%2F0.1%5C%5CP%3D4000%5BN%2Fm%5E%7B2%7D%20%5Dor%204000%5BPa%5D)
Answer: Yes the further the sun is away the longer the shadow is. At noon,the shadow is the shortest because its straight up above you. If this helps pls mark brainliest!
For purposes of completing our calculations, we're going to assume that
the experiment takes place on or near the surface of the Earth.
The acceleration of gravity on Earth is about 9.8 m/s², directed toward the
center of the planet. That means that the downward speed of a falling object
increases by 9.8 m/s for every second that it falls.
3 seconds after being dropped, a stone is falling at (3 x 9.8) = 29.4 m/s.
That's the vertical component of its velocity. The horizontal component is
the same as it was at the instant of the drop, provided there is no horizontal
force on the stone during its fall.