Answer:
X: period
Y: tangential speed
Explanation:
100% on quiz your welcome(:
The answer for this is b 3.500.000j
Answer:
The ball stops instantaneously at the topmost point of the motion.
Explanation:
Assume we have thrown a ball up in the air. For that we have given a force on the ball and it acquires an initial velocity in the upward direction.
The forces that resist the motion of the ball in the upward direction are the force of gravity and air resistance. The ball will instantaneously come to rest when the velocity of the ball reduces to zero.
The two forces acting in the downward direction reduces its speed continuously and it becomes zero at the topmost point.
So mathematical harmonics are based around a divergent set of fractions. Sigma(1/n)
with the 1st harmonic being... well 1, or 1 full wavelength.The second harmonic is exactly 1/2 the wavelength of the 1st with the third being 1/3 the wavelength. As Wavelengths go down, frequencies go up in a perfect ratio.
Second Harmonic has double the Frequency of the 1st or base note. Third Harmonic is triple and so on.
So the Harmonic set of 375 is.
1. 375
2. 375×2=750
3. 375×3= 1125
.
.
.
etc (: I hope this helps.
Answer:
T=280.41 °C
Explanation:
Given that
At T= 24°C Resistance =Ro
Lets take at temperature T resistance is 2Ro
We know that resistance R given as
R= Ro(1+αΔT)
R-Ro=Ro αΔT
For copper wire
α(coefficient of Resistance) = 3.9 x 10⁻³ /°C
Given that at temperature T
R= 2Ro
Now by putting the values
R-Ro=Ro αΔT
2Ro-Ro=Ro αΔT
1 = αΔT
1 = 3.9 x 10⁻³ x ΔT
ΔT = 256.41 °C
T- 24 = 256.41 °C
T=280.41 °C
So the final temperature is 280.41 °C.