The molecule have TETRAHEDRAL HYBRID ORBITAL.
SP3 hybridization involves the mixing of one orbital of S sub level and three orbitals of P sub level of the valence shell. All the orbitals possess equivalent energies and shapes. The SP3 orbital has 25% S character and 75% P character. S and P refers to the s and p sub shells.<span />
The question is incomplete, complete question is :
Determine the pH of an HF solution of each of the following concentrations. In which cases can you not make the simplifying assumption that x is small? (
for HF is
.)
[HF] = 0.280 M
Express your answer to two decimal places.
Answer:
The pH of an 0.280 M HF solution is 1.87.
Explanation:3
Initial concentration if HF = c = 0.280 M
Dissociation constant of the HF = 

Initially
c 0 0
At equilibrium :
(c-x) x x
The expression of disassociation constant is given as:
![K_a=\frac{[H^+][F^-]}{[HF]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH%5E%2B%5D%5BF%5E-%5D%7D%7B%5BHF%5D%7D)


Solving for x, we get:
x = 0.01346 M
So, the concentration of hydrogen ion at equilibrium is :
![[H^+]=x=0.01346 M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dx%3D0.01346%20M)
The pH of the solution is ;
![pH=-\log[H^+]=-\log[0.01346 M]=1.87](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D%3D-%5Clog%5B0.01346%20M%5D%3D1.87)
The pH of an 0.280 M HF solution is 1.87.
Answer:
It’s true
Explanation:
If we account for all reactants and products in a chemical reaction, the total mass will be the same at any point in time in any closed system. ... The Law of Conservation of Mass holds true because naturally occurring elements are very stable at the conditions found on the surface of the Earth.
The correct answer would be C.. its ability to be graphed. I am taking this test too! hope this helps!!! :)
The actual yield is 43 g Cl₂.
The <em>limiting reactant was MnO₂</em> because it gave the smaller mass of Cl₂.
∴ The <em>theoretical yield</em> is 60.25 g Cl₂.
% yield = actual yield/theoretical yield × 100 %
Actual yield = theoretical yield × (% yield/100 %) = 60.25 g × (72 %/100%) = 43 g