Actual question from source:-
A 3.96x10-4 M solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000 cm cuvette. A blank had an absorbance of 0.029. The absorbance of an unknown solution of compound A was 0.375. Find the concentration of A in the unknown.
Answer:
Molar absorptivity of compound A = 
Explanation:
According to the Lambert's Beer law:-
Where, A is the absorbance
l is the path length
is the molar absorptivity
c is the concentration.
Given that:-
c = 
Path length = 1.000 cm
Absorbance observed = 0.624
Absorbance blank = 0.029
A = 0.624 - 0.029 = 0.595
So, applying the values in the Lambert Beer's law as shown below:-

<u>Molar absorptivity of compound A =
</u>
Any factor that causes molecules to collide more frequently speeds up the reaction rate. This is achieved by an increase of the reactants concentration, surface area, raised temp. , raised pressure of gaseous reactant, or an addition of catalysts to the reactant
The answer would be letter C - solution.
A mixture should be homogeneous for a light not to be scattered. This is because particles are distributed evenly throughout the mixture which allows light to pass directly. In your choices, the solution allows a beam of light to pass through a liquid in a test tube without scattering.