Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
A meander is best described as a bend or curve in a stream channel.
Answer:
with the molecular formula C3H5(ONO2)3, has a high nitrogen content (18.5 percent) and contains sufficient oxygen atoms to oxidize the carbon and hydrogen atoms while nitrogen is being liberated, so that it is one of the most powerful explosives known.
Explanation:
NTG reduces preload via venous dilation, and achieves modest afterload reduction via arterial dilation. These effects result in decreased myocardial oxygen demand. In addition, NTG induces coronary vasodilation, thereby increasing oxygen delivery.
Answer:
403 Seconds in Minutes is about 6 minutes.
Explanation:
Now, because I don't know if you're labeling your 1500 as meters or miles, I'm assuming it's miles.
I'm going to take a gander at your question.
Since you're technically going so fast for some odd reason.
Your answer should most definitely be 403 MPH
The answer is 2
Hope this helped ??