Although you have not provided the circled electron, I can help you with a wide explanation.
1) Atomic number of manganese is 25. That means that it has 25 protons and 25 electrons.
2) Those 25 electrons are distributed (electron configuration) as per the quantum rules:
1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d⁵
3) The most reasonable is that you have been asked to give the possible quantum numbers for an electron in the 4s or 3d.
4) Those are 7 electrons and these are their possible sets of quantum numbers:
i) For the two electrons in 4s:
n is the main energy level so n = 4
l tells the kind of orbital, which is s, so l = 0
ml is also 0 (it can be from -l to + l, so given that l i s0, ml is 0)
ms: one is +/12 and the other is -1/2 (this is the spin number).
ii) For the 5 electrons in 3d
n = 3
l can be 0, 1, or 2
if l = 0, then ml = 0
if l = 1, then ml can be -1, 0 , or 1 (from - l to + l)
ms can be either +1/2 or - 1/2 (spin)
Hello!
This is the chemical reaction for the
Haber Process:
N₂(g) + 3H₂(g) → 2NH₃(g)
From the chemical coefficients in this reaction and the molar masses, we can write the following conversion factor to calculate the grams of nitrogen that are needed to produce 325 grams of ammonia:

So, there are
267,29 g of N₂ required to produce 325 grams of ammonia.
Have a nice day!
Answer : The time taken for the reaction is, 28 s.
Explanation :
Expression for rate law for first order kinetics is given by :
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 0.0632
t = time taken for the process = ?
= initial amount or concentration of the reactant = 1.28 M
= amount or concentration left time 't' = 
Now put all the given values in above equation, we get:


Therefore, the time taken for the reaction is, 28 s.
P: ?
V: 35,5L = 35,5 dm³
n: 0,54 mol
R: 83,14 hPa·dm³/mol·K
T: 223K
..................
pV = nRT
p = nRT/V
p = (0,54×83,14×223)/35,5
p = 282,02 hPa