Answer:
b. 2.28 M
Explanation:
The reaction of neutralization of NaOH with H2SO4 is:
2NaOH + H2SO4 → Na2SO4 + 2H2O
<em>Where 2 moles of NaOH react per mole of H2SO4</em>
<em />
To solve the concentration of NaOH we need to find the moles of H2SO4. Using the chemical equation we can find the moles of NaOH that react and with the volume the molar concentration as follows:
<em>Moles H2SO4:</em>
45.7mL = 0.0457L * (0.500mol/L) = 0.02285 moles H2SO4
<em>Moles NaOH:</em>
0.02285 moles H2SO4 * (2moles NaOH / 1 mol H2SO4) = 0.0457moles NaOH
<em>Molarity NaOH:</em>
0.0457moles NaOH / 0.020L =
2.28M
Right option:
<h3>b. 2.28 M</h3>
¿What? For you bye, i love you, no sabo ingles.
Yeah, it would be B (1.2 x 102 m^3) because the measurement gave it away even though other numbers were higher, however, the measurements for those were smaller in size.
Answer:
q = -6464.9 kJ
Explanation:
We are given that the heat of combustion is ∆H° = −394 kJ per mol of carbon.Therefore what we need to do is calculate how many moles of C are in the lump of coal by finding its mass since the density is given.
vol = 5.6 cm x 5.1 cm x 4.6 cm = 131.38 cm³
m = d x v = 1.5 g/cm³ x 131.38 cm³ = 197.06 g
mol C = m/MW = 197.06 g/ 12.01g/mol = 16.41 mol
q = −394 kJ /mol C x 16.41 mol C = -6464.9 kJ