To illustrate the Lewis structure,
P has 5 valence electrons
O has 6 valence electrons (each for 4 oxygen)
And finally, for every negative charge, there is an additional valence electron
We should add these all up = 5 + 24 + 3 = 32 valence electrons
With this, we can be guided to illustrate the lewis structure as P as central atom and the 3 oxygen each with a single bond with P and 1 oxygen with a double bond with P. We place the valence electrons until octet rule is satisfied,
we will be left with 12 lone pairs for phosphate ion.
Answer:
The possible valances can be determined by electron configuration and electron negativity
Good Luck even though this was asked 2 weeks ago
Explanation:
All atoms strive for stability. The optima electron configuration is the electron configuration of the VIII A family or inert gases.
Look at the electron configuration of the nonmetal and how many more electrons the nonmetal needs to achieve the stable electron configuration of the inert gases. Non metals tend to be negative in nature and gain electrons. ( They are oxidizing agents)
For example Florine atomic number 9 needs one more electron to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Flowrine has a valance of -1
Oxygen atomic number 8 needs two more electrons to reach a valance number of 8 electrons to equal Neon atomic number 10. Hence Oxygen has a valance charge of -2.
Non metals with a low electron negativity will lose electrons when reacting with another non metal that has a higher electron negativity. When the non metal forms an ion it is necessary to look at the electron structure to determine how many electrons the element can lose to gain stability.
For example Chlorine which is normally -1 like Florine when it combines with oxygen can be +1, +3, + 5 or +7. It can lose its one unpaired electron, or combinations of the unpaired electron and sets of the three pairs of electrons.
Reduction involves the either the addition of hydrogen and removal of oxygen.
<h3>What is reduction?</h3>
Reduction involves the removal of oxygen.
This implies there is a loss of oxygen in reduction.
This can be represented in the extraction of iron from it ores.
Fe₂O₃ + 3CO → 2Fe + 3CO₂
Reduction is also the addition of hydrogen. This implies it is the gain of hydrogen.
For example
CH₃CHO → CH₃CH₂OH
learn more on reduction here: brainly.com/question/9485345
#SPJ12