Answer:
fr = ½ m v₀²/x
Explanation:
This exercise the body must be on a ramp so that a component of the weight is counteracted by the friction force.
The best way to solve this exercise is to use the energy work theorem
W = ΔK
Where work is defined as the product of force by distance
W = fr x cos 180
The angle is because the friction force opposes the movement
Δk =
–K₀
ΔK = 0 - ½ m v₀²
We substitute
- fr x = - ½ m v₀²
fr = ½ m v₀²/x
Resistance is current x potential difference. So therefor run wafff
dissipation is the answer ;(
a centrifugal clutch works, as the name suggests, through centrifugal force. ... The rotation of the hub forces the shoes or flyweights outwards until they come into contact with the clutch drum, the friction material transmits the torque from the flyweights to the drum. The drive is then connected
Orient the semi-circle arc such that it is symmetric with respect to the y-axis. Now, by symmetry, the electric field in the x-direction cancels to zero. So the only thing of interest is the electric field in the y-direction.
dEy=kp/r^2*sin(a) where k is coulombs constant p is the charge density r is the radius of the arc and a is the angular position of each point on the arc (ranging from 0 to pi. Integrating this renders 2kq/(pi*r^3). Where k is 9*10^9, q is 9.8 uC r is .093 m
I answeared your question can you answear my question pleas