1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iVinArrow [24]
3 years ago
11

Describe how the design of a vacuum flask keeps the liquid inside hot ?

Physics
2 answers:
slavikrds [6]3 years ago
4 0
The gap between the two flasks<span> is partially evacuated of air, creating a near-</span>vacuum<span> which significantly reduces heat transfer by conduction or convection. </span>Vacuum flasks<span> are used domestically to </span>keep<span> beverages</span>hot<span> or cold.</span>
JulijaS [17]3 years ago
3 0
The gap between the two flasks is partially evacuated of air creating a near vacuum which significantly reduces heat transfer by conduction or convection 
You might be interested in
To initiate a nuclear reaction, an experimental nuclear physicist wants to shoot a proton into a 5.50-fm-diameter 12C nucleus. T
Fantom [35]

Answer:

V_1= 3.4*10^7m/s

Explanation:

From the question we are told that

Nucleus diameter d=5.50-fm

a 12C nucleus

Required kinetic energy K=2.30 MeV

Generally initial speed of proton must be determined,applying the law of conservation of energy we have

            K_2 +U_2=K_1+U_1

where

K_1 =initial kinetic energy

K_2 =final kinetic energy

U_1 =initial electric potential

U_2 =final electric potential

mathematically

   U_2 = \frac{Kq_pq_c}{r_2}

where

r_f=distance b/w charges

q_c=nucleus charge =6(1.6*10^-^1^9C)

K=constant

q_p=proton charge

Generally kinetic energy is know as

         K=\frac{1}{2}  mv^2

Therefore

         U_2 = \frac{Kq_pq_c}{r_2} + K_2=\frac{1}{2}  mv_1^2 +U_1

Generally equation for radius is d/2

Mathematically solving for radius of nucleus

         R=(\frac{5.50}{2}) (\frac{1*10^-^1^5m}{1fm})

         R=2.75*10^-^1^5m

Generally we can easily solving mathematically substitute into v_1

   q_p=6(1.6*10^-^1^9C)

   K_1=9.0*10^9 N-m^2/C^2

   U_1= 0

   R=2.75*10^-^1^5m

   K=2.30 MeV

   m= 1.67*10^-^2^7kg

   V_1= (\frac{2}{1.67*10^-^2^7kg})^1^/^2 (\frac{(9.0*10^9 N-m^2/C^2)*(6(1.6*10^-^1^9C)(1.6*10^-^1^9C)}{2.75*10^-^1^5m+2.30 MeV(\frac{1.6*10^-^1^3 J}{1 MeV}) }

    V_1= 3.4*10^7m/s

Therefore the proton must be fired out with a speed of V_1= 3.4*10^7m/s

8 0
3 years ago
Q.Solve the following circuit find total resistance RT. Also find value of voltage across resister RC.
vagabundo [1.1K]

Answer:

R_total = 14.57 Ω ,  V_C = 1.176 V

Explanation:

To solve this circuit we are going to find the equivalent resistance of each branch, let's remember

* Serial resistance  

         R_{eq} = ∑ R_{i}

* For resistance in parallel

        1 / R_{eq} = ∑ 1/R_{i}

We solve the two branches of the wheatstone bridge

Series resistors

Branch B

         R_B = Rb + R4

         R_B = 2 + 18

         R_B = 20 Ω

Branch C

         R_C5 = Rc + R5

         R_C5 = 3 + 12

         R_C5 = 15 Ω

Resistance in parallel R_B and R_C5

         1 / R_BC = 1 / R_B + 1 / R_C5

          1 / R_BC = 1/20 + 1/15 = 0.116666

          R_BC = 8.57 Ω

Now we have a single branch, we solve the series resistance

          R_total = R_A + R_BC

          R_total = 6 + 8.57

          R_total = 14.57 Ω

b) they ask us for the voltage in the resistance R_C

Let's remember that the voltage in a series circuit is the sum of the voltages

           10 = V_a + V_BC

           10 = i R_a + i R_BC = i (R_a + R_BC)

           i = 10 / (R_a + R_BC)

           i = 10 / (14.57)

           i = 0.6863 A

The current in the series circuit is constant

          V_BC = i R_BC

          V_BC = 0.6863 8.57

          V_BC = 5.8819 V

This voltage is divided in the bridge, for the two branches in parallel it is the same, but the resistance is different in each branch.

     Branch C

             V_BC = i R_C5

             i = V_BC / R_C5

             i = 5.8819 / 15

             i = 0.39213 A

In this branch we have two resistors in series, let's remember that the current in a series circuit is constant

             V_C = i R_C

              V_C = 0.39213 3

              V_C = 1.176 V

3 0
3 years ago
How many digits are in front of the decimal in scientific notation?
nikklg [1K]

Answer:

1

Explanation:

How many digits are in front of the decimal in scientific notation?

7 0
3 years ago
Importance of electric circuit​
Feliz [49]

Answer:

It is important because it carries useful energy through your house that you can use for a variety of tasks.

Explanation:

Hope this helped !

8 0
3 years ago
What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally h
zysi [14]

Complete question:

What is the peak emf generated by a 0.250 m radius, 500-turn coil is rotated one-fourth of a revolution in 4.17 ms, originally having its plane perpendicular to a uniform magnetic field 0.425 T. (This is 60 rev/s.)

Answer:

The peak emf generated by the coil is 15.721 kV

Explanation:

Given;

Radius of coil, r = 0.250 m

Number of turns, N = 500-turn

time of revolution, t = 4.17 ms = 4.17 x 10⁻³ s

magnetic field strength, B = 0.425 T

Induced peak emf = NABω

where;

A is the area of the coil

A = πr²

ω is angular velocity

ω = π/2t = (π) /(2 x 4.17 x 10⁻³) = 376.738 rad/s =  60 rev/s

Induced peak emf = NABω

                               = 500 x (π x 0.25²) x 0.425 x 376.738

                               = 15721.16 V

                               = 15.721 kV

Therefore, the peak emf generated by the coil is 15.721 kV

5 0
3 years ago
Other questions:
  • In a follow-up experiment, two identical gurneys are placed side-by-side on a ramp with their wheels locked to eliminate spinnin
    14·1 answer
  • Two long straight wires carry currents perpendicular to the xy plane. One carries a current of 50 A and passes through the point
    11·1 answer
  • If a question asks about velocity in a projectile, is it referring to the vertical or horizontal velocity? An example where this
    14·1 answer
  • A 20g book laying on a 40cm high table. Just before a cat knocks it off the table what is the books gravitational potential ener
    9·1 answer
  • A 3-cm high object is in front of a thin lens. The object distance is 4 cm and the image distance is –8 cm. (a) What is the foca
    7·1 answer
  • a cart is initially moving at 0.5 m/s along a track. The cart comes to rest after traveling I m. The experiment is repeated on t
    5·2 answers
  • When developing an experimental design, which action could a scientist take to improve the quality of the results?
    14·1 answer
  • A tractor ploughing a field accelerates at 2 m/s2
    11·1 answer
  • What happens when the speed of an object increase without change in height in the potential energy?
    14·1 answer
  • There is a square loop of wire with side length L moving to the right at a speed of v. The resistance in the wire is R. To the r
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!