Answer:
3683.67 m
Explanation:
Formula for maximum height of projectile is given by the equation;
h = u²/2g
Where u is initial velocity and g is acceleration due to gravity
We are given u = 190 m/s
Thus;
h = 190²/9.8
h = 36100/9.8
h = 3683.67 m
The mirror formula for curved mirrors is:

where
f is the focal length of the mirror

is the distance of the object from the mirror

is the distance of the image from the mirror
The sign convention that should be used in order to find the correct values is the following:
-

: positive if the mirror is concave, negative if the mirror is convex
-

: positive if the image is real (located on the same side of the object), negative if it is virtual (located on the opposite side of the mirror)
Part A:
Acceleration can be calculated by dividing the difference of the initial and final velocities by the given time. That is,
a = (Vf - Vi) / t
where a is acceleration,
Vf is final velocity,
Vi is initial velocity, and
t is time
Substituting,
a = (9 m/s - 0 m/s) / 3 s = 3 m/s²
<em>ANSWER: 3 m/s²</em>
Part B:
From Newton's second law of motion, the net force is equal to the product of the mass and acceleration,
F = m x a
where F is force,
m is mass, and
a is acceleration
Substituting,
F = (80 kg) x (3 m/s²) = 240 kg m/s² = 240 N
<em>ANSWER: 240 N </em>
Part C:
The distance that the sprinter travel is calculated through the equation,
d = V₀t + 0.5at²
Substituting,
d = (0 m/s)(3 s) + 0.5(3 m/s²)(3 s)²
d = 13.5 m
<em>ANSWER: d = 13.5 m</em>
Answer:
A: 4
B: 7
C. 3
Source:
Trust me bro
(Don’t act put this I jus need to answer questions sorry)<\3