Answer:
a) horizontal range s=277671.77 m
b) time the shell is in motion 301.143 s
Explanation:
Is a parabolic movement so the velocity have two components:

°









Answer:
no where we all stay home
False it travels faster through solids than it travels through air.
the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
Answer:
x = 2,864 m
, Ra = 32.1 m
Explanation:
Let's solve this problem in parts, let's start by finding the intensity of the sound in each observer
observer A β = 64 db
β = 10 log Iₐ / I₀
where I₀ = 1 10⁻¹² W / m²
Iₐ = I₀ 10 (β/ 10)
let's calculate
Iₐ = 1 10⁻¹² (64/10)
Iₐ = 2.51 10⁻⁶ W / m²
Observer B β = 85 db
I_b = 1 10-12 10 (85/10)
I_b = 3.16 10⁻⁴ W / m²
now we use that the emitted power that is constant is the intensity over the area of the sphere where the sound is distributed
P = I A
therefore for the two observers
P = Ia Aa = Ib Ab
the area of a sphere is
A = 4π R²
we substitute
Ia 4pi Ra2 = Ib 4pi Rb2
Ia Ra2 = Ib Rb2
Let us call the distance from the observer be to the haughty R = ax, so the distance from the observer A to the haughty is R = 35 ax; we substitute
Ia (35 -x) 2 = Ib x2
we develop and solve
35-x = Ra (Ib / Ia) x
35 = [Ra (Ib / Ia) +1] x
x (11.22 +1) = 35
x = 35 / 12.22
x = 2,864 m
This is the distance of observer B
The distance from observer A
Ra = 35 - x
Ra = 35 - 2,864
Ra = 32.1 m