Answer:
what do u mean.
3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
Answer:
second-law efficiency = 62.42 %
Explanation:
given data
temperature T1 = 1200°C = 1473 K
temperature T2 = 20°C = 293 K
thermal efficiency η = 50 percent
solution
as we know that thermal efficiency of reversible heat engine between same temp reservoir
so here
efficiency ( reversible ) η1 = 1 -
............1
efficiency ( reversible ) η1 = 1 -
so efficiency ( reversible ) η1 = 0.801
so here second-law efficiency of this power plant is
second-law efficiency =
second-law efficiency =
second-law efficiency = 62.42 %
Answer: environmental impact
Explanation:
From the question, we are informed that Harlin is designing a new car engine that does not create pollution.
The technological design factor which is probably the most important for the design is the impact on the environment.
Pollution has a negative effect on the environment a d doing this shows that emphasis is placed on how the environmental issue of pollution can be tackled.
Answer: it would overload
Explanation: