Answer:
The filled in the black answers is:
1. work book
2. Spreadsheet
3. Cell
4. Sheet tabs
5. Column
6. Row
7.Cell content
8. data
9. Formula
10. Constant value
11. Number value
12. Cell address
Answer:112.376 s
Explanation:
Given






Using Newton's law of cooling
=
=
7=
Taking log both side
t=112.376sec
Answer:

Part A:
(-ve sign shows heat is getting out)
Part B:
(Heat getting in)
The value of Q at constant specific heat is approximately 361% in difference with variable specific heat and at constant specific heat Q has opposite direction (going in) than Q which is calculated in Part B from table A-23. So taking constant specific heat is not a good idea and is questionable.
Explanation:
Assumptions:
- Gas is ideal
- System is closed system.
- K.E and P.E is neglected
- Process is polytropic
Since Process is polytropic so 
Where n=1.25
Since Process is polytropic :


Now,


We will now calculate mass (m) and Temperature T_2.


Part A:
According to energy balance::

From A-20, C_v for Carbon dioxide at 300 K is 0.657 KJ/Kg.k

(-ve sign shows heat is getting out)
Part B:
From Table A-23:

(By interpolation)


(Heat getting in)
The value of Q at constant specific heat is approximately 361% in difference with variable specific heat and at constant specific heat Q has opposite direction (going in) than Q which is calculated in Part B from table A-23. So taking constant specific heat is not a good idea and is questionable.
Answer:
B. $5.18
Explanation:
Cost of electricity per kWh = $0.09
Power consumption of refrigerator = 320W = 320/1000 = 0.32kW
In a month (30 days) the refrigerator works 1/4 × 30 days = 7.5 days = 7.5 × 24 hours = 180 hours
Energy consumed in 180 hours = 0.32kW × 180h = 57.6kWh
Cost of electricity of 57.6kWh energy consumed by the refrigerator = 57.6 × $0.09 = $5.18
Answer:
Both model building codes and NFPA 220 can be used to determine the type of construction used in a building.