The matrix is not properly formatted.
However, I'm able to rearrange the question as:
![\left[\begin{array}{ccc}1&1&1|-1\\-2&3&5|3\\3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C-2%263%265%7C3%5C%5C3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
Operations:


Please note that the above may not reflect the original question. However, you should be able to implement my steps in your question.
Answer:
![\left[\begin{array}{ccc}1&1&1|-1\\0&5&7|1\\0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C0%265%267%7C1%5C%5C0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The first operation:

This means that the new second row (R2) is derived by:
Multiplying the first row (R1) by 2; add this to the second row
The row 1 elements are:
![\left[\begin{array}{ccc}1&1&1|-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D)
Multiply by 2
![2 * \left[\begin{array}{ccc}1&1&1|-1\end{array}\right] = \left[\begin{array}{ccc}2&2&2|-2\end{array}\right]](https://tex.z-dn.net/?f=2%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%262%7C-2%5Cend%7Barray%7D%5Cright%5D)
Add to row 2 elements are: ![\left[\begin{array}{ccc}-2&3&5|3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%265%7C3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}2&2&2|-2\end{array}\right] + \left[\begin{array}{ccc}-2&3&5|3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%262%262%7C-2%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%265%7C3%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}0&5&7|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%265%267%7C1%5Cend%7Barray%7D%5Cright%5D)
The second operation:

This means that the new third row (R3) is derived by:
Multiplying the first row (R1) by -3; add this to the third row
The row 1 elements are:
![\left[\begin{array}{ccc}1&1&1|-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D)
Multiply by -3
![-3 * \left[\begin{array}{ccc}1&1&1|-1\end{array}\right] = \left[\begin{array}{ccc}-3&-3&-3|3\end{array}\right]](https://tex.z-dn.net/?f=-3%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-3%26-3%7C3%5Cend%7Barray%7D%5Cright%5D)
Add to row 2 elements are: ![\left[\begin{array}{ccc}3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}-3&-3&-3|3\end{array}\right] + \left[\begin{array}{ccc}3&2&4|1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-3%26-3%26-3%7C3%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%264%7C1%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Hence, the new matrix is:
![\left[\begin{array}{ccc}1&1&1|-1\\0&5&7|1\\0&-1&1|4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%261%7C-1%5C%5C0%265%267%7C1%5C%5C0%26-1%261%7C4%5Cend%7Barray%7D%5Cright%5D)
Answer:
And we can find the individual probabilities:
And replacing we got:
Step-by-step explanation:
Previous concepts
The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".
Solution to the problem
Let X the random variable of interest, on this case we now that:
The probability associated to a failure would be p =1-0.09 = 0.91
The probability mass function for the Binomial distribution is given as:
Where (nCx) means combinatory and it's given by this formula:
And we want to find this probability:
And we can find the individual probabilities:
And replacing we got:
To hundred three hundred and five
3x-3y+0+1-1 Just tack on something onto it that doesn't change the outcome