Answer:
Answer is in the explanation
Explanation:
All acids that dissociates completely in water are considered strong acids. In the same way, bases that dissociates completely in water are strong bases. All hydroxides made from alkali metals and heavier alkali earth metals are strong bases.
HNO3 dissociates completely in water: STRONG ACID.
HCl dissociates completely in water. STRONG ACID.
NaCl is a salt. Neither a strong acid nor a strong base.
Ca(OH)2. Heavy alkaline earth metal. STRONG BASE.
CH3COOH an acid that doesn't dissociate completely in water. Neither a strong acid nor a strong base.
CH3NH2 is a weak base that doesn't dissociate completely in water. Neither a strong acid nor a strong base.
CH3OH. Methanol is an alcohol. Neither a strong acid nor a strong base.
HF is a weak acid; doesn't dissociate completely in water. Neither a strong acid nor a strong base.
RbOH. Is an hydroxide made from alkali metal. STRONG BASE.
<u>Burning prohibited materials, such as garbage, plastic and painted or treated wood, is harmful to the environment because these materials release toxic chemicals that pollute our air. ... Residue from burning contaminates the soil and groundwater and can enter the human food chain through crops and livestock.</u>
No hay suficiente informacion.
Answer:
l = 0 → s = 2 electrons;
l = 1 → p = 6 electrons;
l = 2 → d = 10 electrons;
l= 3 → f = 14 electrons.
Explanation:
For the quantum theory, the probability to find an electron is higher in the space region called orbital. It's impossible to determine where the electron is and his velocity at the same time (uncertainty principle). So, the theory determines four quantum numbers to characterize an electron, so it's easy to identify it:
- n is the principal quantum number and identify the shell where the electron is. It varies from 1 to 7 and is represented by the letters K, L, M, N, O, P, and Q;
- l is the azimuthal quantum number and identify the subshell (or sublevel) where the electron is. It varies from 0 to 3 and is represented by the letters s, p, d, and f;
- ml is the magnetic quantum number, and it represents the orbital. It varies from -l to +l, passing by 0. Each orbital can have at least 2 electrons;
- ms is the spin number and represents the spin of the electrons. It can be +1/2 or - 1/2.
Then, the sublevel s (l= 0) only has 1 orbital (ml = 0) so, it can have ate least 2 electrons; the sublevel p (l= 1) has 3 orbitals (ml = -1, ml= 0, ml = +1), so it can have at least 6 electrons; the sublevel d (l = 2) has 5 orbitals (ml = -2, ml = -1, ml = 0, ml = +1, ml = +2), so it can have at least 10 electrons; and the sublevel f (l = 3) has 7 orbitals (ml = -3, ml = -2, ml = -1, ml = 0, ml = +1, ml = +2, ml = +3), so it can have at least 14 electrons.
Explanation:
The given data is as follows.
= 0.483,
= 0.173 M,
= 0.433 M,
= 0.306 M,
= 9.0 atm
According to the ideal gas equation, PV = nRT
or, P =
Also, we know that
Density = 
So, P = MRT
and, M = 
= 
= 
= 0.368 mol/L
Now, we will calculate the cell potential as follows.
E = ![E^{o} - \frac{0.0591}{n} log \frac{[Co^{2+}]^{2}[Cl_{2}]}{[Co^{3+}][Cl^{-}]^{2}}](https://tex.z-dn.net/?f=E%5E%7Bo%7D%20-%20%5Cfrac%7B0.0591%7D%7Bn%7D%20log%20%5Cfrac%7B%5BCo%5E%7B2%2B%7D%5D%5E%7B2%7D%5BCl_%7B2%7D%5D%7D%7B%5BCo%5E%7B3%2B%7D%5D%5BCl%5E%7B-%7D%5D%5E%7B2%7D%7D)
= 
= 
= 
= 0.483 - 0.0185
= 0.4645 V
Thus, we can conclude that the cell potential of given cell at
is 0.4645 V.