Answer:
Mass = 547.02 × 10⁻²³g
Explanation:
Given data:
Number of atoms of Al = 122 atom
Mass in gram = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
122 atom/6.022 × 10²³ atoms × 1 mol
20.26× 10⁻²³ mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 20.26× 10⁻²³ mol × 27 g/mol
Mass = 547.02 × 10⁻²³g
Answer:
0.08 mol L-1
Explanation:
Sulfuric acid Formula: H2SO4
Ammonia Formula: NH3
Ammonium sulfate Formula: (NH₄)₂SO₄
H2SO4 + 2NH3 = 2NH4+ + SO4 2-
H2SO4 + 2NH3 = (NH₄)₂SO₄
H2SO4 = (1/2)x (32.8 x 10^-3 L x 0.116 mol L-1)/25 x 10^-3 L
= 0.08 mol L-1
Aluminum
Bauxite ore is the world's primary source of aluminum. The ore must first be chemically processed to produce alumina (aluminum oxide). Alumina is then smelted using an electrolysis process to produce pure aluminum metal. Bauxite is typically found in topsoil located in various tropical and subtropical regions.
When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 C to 29.4 C. Find ⌂E rxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/ C.
<span>The answer is - 6.30 * 10^3 kJ/mol
</span>
0.115 M means that 0.115 moles of KBr are contained in a volume of 1000 ml, therefore a volume of 350 ml will have (0.115 × 0.35) = 04025 moles
From the formula of molarity moles = molarity × volume in liters
1 mole of KBr is equivalent to 119 g
Therefore, the mass = 0.04025 × 119 g = 4.79 g