1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Inessa [10]
3 years ago
7

Watch the video of Norman. What type of energy transformation is happening?

Mathematics
1 answer:
ANTONII [103]3 years ago
4 0
I would say the answer is either c or a, can’t see the video so i can’t really determine
You might be interested in
Jimmy is cutting old rope to make homemade rugs. Each rug has long pieces and short pieces. Complete questions 1011.
Svetllana [295]

Answer:

long pieces 126 Short pieces 21

Step-by-step explanation:

18+18+18+18+18+18+18=126

3+3+3+3+3+3+3=21

hope this helped <3

3 0
3 years ago
Question 4<br> Choose all numbers that make the inequality true.<br> -1 &gt;p
devlian [24]

Answer:

0 and above

Step-by-step explanation:

it can go onto infinity put 0 or Amy positive number and you got it

3 0
3 years ago
Please help please☺
Lera25 [3.4K]
1. Felicia is 2 years old (2 cubed is 8)

2.  If you take 288 times 3 and divide it by 4= 216 
     And 216 is a perfect cube
7 0
3 years ago
Read 2 more answers
Radioactive Waste The rate at which radioactive waste is entering the atmosphere at time t is decreasing and is given by Pe^-kt,
Dmitry_Shevchenko [17]

Answer:

\displaystyle{\int^{\infty}_0 {50e^{-0.04t}}\, dt}=1250

Step-by-step explanation:

Given:

T =\displaystyle{\int^{\infty}_0 {Pe^{-kt}} \, dt}

where,

T = total amount of waste

P = 50, the initial rate

k = 0.04

t = time

T =\displaystyle{\int^{\infty}_0 {50e^{-0.04t}} \, dt}

now we need to solve this integral!

T =\displaystyle{50\int^{\infty}_0 {e^{-0.04t}} \, dt}

T = \left|50\left(\dfrac{e^{-0.04t}}{-0.04}\right)\right|^{\infty}_0

T = \left|-1250e^{-0.04t}\right|^{\infty}_0

T = (-1250e^{-0.04(\infty)})-(-1250e^{-0.04(0)})

when any number has a power of negative infinity it is 0. because: a^-{\infty} = \dfrac{1}{a^{\infty}} = \dfrac{1}{\infty} = 0, like something being divided by a very large number!

T = (-1250(0))-(-1250e^0)

T = 1250

this is the total amount of waste

6 0
3 years ago
Isle Royale, an island in Lake Superior, has provided an important study site of wolves and their prey. Of special interest is t
STatiana [176]

Answer:

<em>Part a) Probability that a moose in that age group is killed by a wolf</em>

  • P  (0.5 year) = 0.361
  • P (1 - 5) = 0.159
  • P (6 - 10) = 0.267
  • P (11 - 15) = 0.203
  • P (16 - 20) = 0.010

<em>Part b)</em>

  • <em>Expected age of a moose killed by a wold</em>

         μ = 5.61 years

  • <em>Stantard deviation of the ages</em>

       σ = 4.97 years

Explanation:

1) Start by arranging the table to interpret the information:

<u>Age of Moose in years          Number killed by woolves</u>

Calf (0.5)                                                 107

1 - 5                                                           47

6 - 10                                                         79

11 - 15                                                        60

16 - 20                                                        3

You can  now verify the total number of moose deaths identified as wolf kills: 107 + 47 + 79 + 60 + 3 = 296, such as stated in the first part of the question.

2) <u>First question: </u>a) For each age, group, compute the probability that a moos in that age group is killed by a wolf.

i) Formula:

Probability = number of positive outcomes / total number of events.

ii) Probability that a moose in an age group is killed by a wolf = number of moose killed by a wolf in that age group / total number of moose deaths identified as wolf kills.

iii) P  (0.5 year) = 107 / 296 = 0.361

iv) P (1 - 5) = 47 / 296 = 0.159

v) P (6 - 10) = 79 / 296 = 0.267

vi) P (11 - 15) = 60 / 296 = 0.203

vii) P (16 - 20) = 3 / 296 = 0.010

3) <u>Second question:</u> b) Consider all ages in a class equal to the class midpoint. Find the expected age of a moose killed by a wolf and the standard deviation of the ages.

i) Class       midpoint

   0.5               0.5

   1 - 5           (1 + 5) / 2 = 3

   6 - 10         (6 + 10) / 2 = 8

   11 - 15         (11 + 15) / 2 = 13

   16 - 20       (16 + 20) = 18

ii) Expected age of a moose killed by a wolf = mean of the distribution = μ

μ = Sum of the products of each probability times its age (mid point)

μ = 0.5 ( 0.361) + 3 ( 0.159) + 8 ( 0.267) + 13 ( 0.203) + 18 ( 0.010) = 5.61 years

μ = 5.61 years ← answer

iii) Stantard deviation of the ages = σ

σ = square root of the variace

variance = s = sum of the products of the squares of the differences between the mean and the class midpoint time the probability.

s =  (0.5 - 5.61)² (0.361) + (3 - 5.61)² ( 0.159) + (8  - 5.61)² ( 0.267) + (13 - 5.61)² ( 0.203) + (18 - 5.61)² ( 0.010) = 24.65

σ = √ (24.65) = 4.97 years ← answer

7 0
3 years ago
Other questions:
  • Suppose the professor decides to grade on a curve. If the professor wants 16% of the students to get an A, what is the minimum s
    7·1 answer
  • Adding and Subrtracting Fractions.Solve each problem.Write your answer as a mixed number(if possible)
    12·1 answer
  • Which expression is equivalent to –21.8 – (–18.3)?
    7·2 answers
  • Solve for x. Write the smaller solution first, and the larger solution second.<br>x^2 - 4x + 3 = 0​
    15·1 answer
  • Which expression is equivalent to 7(7y)?
    8·1 answer
  • A group of fitness club members lose a combined total of 28 kilograms in 1 week. There are approximately 2.2 pounds in 1 kilogra
    14·1 answer
  • Find the inverse of f(x)=2x^2+5
    10·1 answer
  • 1. The following diagram shows part of the graph of y=p⋅sin(qx)+r. The point A (15, 2) is a maximum point and B(45, 1) is a mini
    12·1 answer
  • Suppose f(x) = x - 2. Find the graph of 1/2 f(x)
    15·1 answer
  • What is the width of a rectangle with an area of 300 square feet and a length of L feet?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!