To solve this problem we will use the Ampere-Maxwell law, which describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

Where,
B= Magnetic Field
l = length
= Vacuum permeability
= Vacuum permittivity
Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

Recall that the speed of light is equivalent to

Then replacing,


Our values are given as




Replacing we have,



Therefore the magnetic field around this circular area is 
Are there any options??
I would have to say metal of course but without options I can't assume anything
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .
Energy slowly leaks outward through the radiative diffusion of photons that repeatedly bounce off ions and electrons.
<h3>What is radiative diffusion?</h3>
A radiation zone is a layer of a star's core where energy is mostly carried toward the outside by radiative diffusion and thermal conduction rather than convection.
As photons, energy passes through the radiation zone as electromagnetic radiation.
The radiative diffusion of photons that repeatedly bounce off ions and electrons progressively drains energy outward.
Hence,radiative diffusion is correct answer.
To learn more about radiative diffusion refer:
brainly.com/question/3598352
#SPJ4
Of course not !
You can observe the color of a rose, measure the length of
your house, take the temperature of your hot chocolate, and
measure your own weight, without creating any new substances.