According to Newton's second law, the resultant of the forces acting on the box is equal to the product between its mass and its acceleration:

(1)
we are only concerned about the horizontal direction, so there are only two forces acting on the box in this direction:
- the horizontal component of the force exerted by the rope, which is equal to

- the frictional force, acting in the opposite direction, which is equal to

By applying Newton's law (1), we can calculate the acceleration of the box:

Answer:
1373.4 N/m
Explanation:
Hooke's law states that the extension of a spring and force are related by the expression, F=kx where k is spring constant, x is extension of spring and F is the applied force. Making k the subject of the formula then

Also, F=gm hence the above formula is modified as

Taking g as 9.81 m/s2 , x as 0.5 m and m as 70 kg then

Answer:

0.3619sec
Explanation:
Given that
Mass,m=148 g
Length,L=13 cm
Velocity,u'(0)=10 cm/s
We have to find the position u of the mass at any time t
We know that

Where 

u(0)=0
Substitute the value

Substitute u'(0)=10


Substitute the values

Period =T = 2π/8.68
After half period
π/8.68 it returns to equilibruim
π/8.68 = 0.3619sec
Answer:
d. None of the above.
Explanation:
In a parabolic motion, you have that in the complete trajectory the component velocity is constant and the vertical component changes in time. Then, the total velocity vector is not zero.
In the complete trajectory the gravitational acceleration is always present. Then, the grasshopper's acceleration vector is not zero.
At the top of the arc the grasshopper is not at equilibrium because the gravitational force is constantly acting on the grasshopper.
Then, the correct answer is:
d. None of the above.