Answer:
v_2 = 2*v
Explanation:
Given:
- Mass of both charges = m
- Charge 1 = Q_1
- Speed of particle 1 = v
- Charge 2 = 4*Q_1
- Potential difference p.d = 10 V
Find:
What speed does particle #2 attain?
Solution:
- The force on a charged particle in an electric field is given by:
F = Q*V / r
Where, r is the distance from one end to another.
- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:
F_net = m*a
- Equate the two expressions:
a = Q*V / m*r
- The speed of the particle in an electric field is given by third kinetic equation of motion.
v_f^2 - v_i^2 = 2*a*r
Where, v_f is the final velocity,
v_i is the initial velocity = 0
v_f^2 - 0 = 2*a*r
Substitute the expression for acceleration in equation of motion:
v_f^2 = 2*(Q*V / m*r)*r
v_f^2 = 2*Q*V / m
v_f = sqrt (2*Q*V / m)
- The velocity of first particle is v:
v = sqrt (20*Q / m)
- The velocity of second particle Q = 4Q
v_2 = sqrt (20*4*Q / m)
v_2 = 2*sqrt (20*Q / m)
v_2 = 2*v
A window is the most transparent object from these, so that is the answer.
The largest resultant amplitude would be that created by constructive interference, basically when the two waves are of the same phase, so it would be 0.36m+0.22m= 0.58 m.
Answer:
The liquid turns to a gas.
Explanation:
If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. Particles in the middle of the liquid form bubbles of gas in the liquid.
The kinetic energy of the tomato is :
K.E = 1/2 mv^2
K.E = 1/2 x 0.18 kg x 11 m/S^2
K.E = 0.99
Hope this helps