oops i just did :)
Point-slope form is y - y_1 = m (x - x_1) where x_1 and y_1 are the given coordinates and m is the slope. When you plug the given values into the equation you get y - 3 = 6 (x - 8) .
Answer:
attach the graph in orfer for us to answer
Step-by-step explanation:
(-8,1) it being reflected to the other side so just move the points
Answer:
0 <=t<=21
Step-by-step explanation:
Projectile is Moving upwards on an interval of (0 to 21), if we plot Velocity vs Time and denote positive y-axis above 0 and negative y-axis below 0(for velocity), then from 0 to 21 t projectile is moving upwards and has positive velocity, when the projectile reaches the top of it's motion and returns back down to ground it's velocity is negative and is plotted below the y =0 (note that is for t > 21).
hence for the interval 0 <=t <=21 the instantaneous velocity is positive (Note, instantaneous velocity is also the derivative of the velocity or the slope ).
16x^2 + 25y^2 + 160x - 200y + 400 = 0 Rearrange and regroup.
(16x^2 + 160x) + (25y^2 - 200y ) = 0-400. Group the xs together and the ys together.
16(X^2 + 10x) + 25(y^2-8y) = -400. Factorising.
We are going to use completing the square method.
Coefficient of x in the first expression = 10.
Half of it = 1/2 * 10 = 5. (Note this value)
Square it = 5^2 = 25. (Note this value)
Coefficient of y in the second expression = -8.
Half of it = 1/2 * -8 = -4. (Note this value)
Square it = (-4)^2 = 16. (Note this value)
We are going to carry out a manipulation of completing the square with the values
25 and 16. By adding and substracting it.
16(X^2 + 10x) + 25(y^2-8y) = -400
16(X^2 + 10x + 25 -25) + 25(y^2-8y + 16 -16) = -400
Note that +25 - 25 = 0. +16 -16 = 0. So the equation is not altered.
16(X^2 + 10x + 25) -16(25) + 25(y^2-8y + 16) -25(16) = -400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = -400 +16(25) + 25(16) Transferring the terms -16(25) and -25(16)
to other side of equation. And 16*25 = 400
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 25(16)
16(X^2 + 10x + 25) + 25(y^2-8y + 16) = 400
We now complete the square by using the value when coefficient was halved.
16(x-5)^2 + 25(y-4)^2 = 400
Divide both sides of the equation by 400
(16(x-5)^2)/400 + (25(y-4)^2)/400 = 400/400 Note also that, 16*25 = 400.
((x-5)^2)/25 + ((y-4)^2)/16 = 1
((x-5)^2)/(5^2) + ((y-4)^2)/(4^2) = 1
Comparing to the general format of an ellipse.
((x-h)^2)/(a^2) + ((y-k)^2)/(b^2) = 1
Coordinates of the center = (h,k).
Comparing with above (x-5) = (x - h) , h = 5.
Comparing with above (y-k) = (y - k) , k = 4.
Therefore center = (h,k) = (5,4).
Sorry the answer came a little late. Cheers.