Answer:
Franco comió 8/3 de pizza.
Fabián comió 5/6 de pizza.
Queremos saber quien comió más.
Entonces básicamente queremos ver cuál número es más grande, 8/3 o 5/6,
Podemos reescribir el primero como:
8/3 = (2 + 3 + 3)/3 = 2/3 + 3/3 + 3/3 = 2/3 + 1 + 1
= 2 + 2/3
En cambio, para el número 5/6, el numerador es menor que el denominador, entonces sabemos que:
5/6 < 1
Claramente podemos ver que 8/3 > 5/6
Entonces podemos concluir que Franco comió más.
<span>The multiplicity of a zero of a polynomial function is how many times a particular number is a zero for a given polynomial.
For example, in the polynomial function

, the zeros are 0 with a multiplicity of 1, -4 with a multiplicity of 2, and 2 with a multiplicity of 3.
Although this polynomial has only three zeros, we say that it has six zeros (or degree of 6) counting the <span>multiplicities.</span></span>
Well this is simple a calculator type problem...but if you are curious as the the algorithm used by simple calculators and such...
They use a Newtonian approximation until it surpasses the precision level of the calculator or computer program..
A newtonian approximation is an interative process that gets closer and closer to the actual answer to any mathematical problem...it is of the form:
x-(f(x)/(df/dx))
In a square root problem you wish to know:
x=√n where x is the root and n is the number
x^2=n
x^2-n=0
So f(x)=x^2-n and df/dx=2x so using the definition of the newton approximation you have:
x-((x^2-n)/(2x)) which simplifies further to:
(2x^2-x^2+n)/(2x)
(x^2+n)/(2x), where you can choose any starting value of x that you desire (though convergence to an exact (if possible) solution will be swifter the closer xi is to the actual value x)
In this case the number, n=95.54, so a decent starting value for x would be 10.
Using this initial x in (x^2+95.54)/(2x) will result in the following iterative sequence of x.
10, 9.777, 9.774457, 9.7744565, 9.7744565066299210578124802523397
The calculator result for my calc is: 9.7744565066299210578124802523381
So you see how accurate the newton method is in just a few iterations. :P
I think it’s 14/-28 which simplifies to 7/-14 which then goes to 1/-2. i hope that helped!
Answer:
A. a = 10
B. m<FNT = 120°
C. m<KTU = 60°
Step-by-step explanation:
A. (7a + 50)° and (14a - 20)° are corresponding angles. Therefore:
(7a + 50)° = (14a - 20)°
Use this equation to find the value of a
7a + 50 = 14a - 20
Combine like terms
7a - 14a = - 50 - 20
-7a = -70
Divide both sides by -7
-7a/-7 = -70/-7
a = 10
B. m<FNT = (14a - 20)° (alternate interior angles are congruent)
Plug in the value of a
m<FNT = 14(10) - 20
m<FNT = 140 - 20
m<FNT = 120°
C. m<KTU + (14a - 20)° = 180° (linear pair)
Plug in the value of a
m<KTU + 14(10) - 20 = 180
m<KTU + 120 = 180
m<KTU + 120 - 120 = 180 - 120
m<KTU = 60°