Answer:

Explanation:
Hello,
In this case, during titration at the equivalence point, we find that the moles of the base equals the moles of the acid:

That it terms of molarities and volumes we have:

Next, solving for the volume of lithium hydroxide we obtain:

Best regards.
<span>I think the correct answer is A. A
buffer is a substance that resists small change in the acidity of a solution
when an acid or base is added to the solution. Usually, a buffer involves a
weak acid or a weak alkali and one of its salt.</span>
<span>H2O2
First, let's determine how many moles of hydrogen and oxygen atoms we have. Start by looking up the atomic weights of those elements:
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Moles hydrogen = 1.33 g / 1.00794 g/mol = 1.319522987 mol
Moles oxygen = 21.3 g / 15.999 g/mol = 1.331333208 mol
We now have a ratio of 1.319522987 : 1.331333208 and we want a ratio of small integers that is close. Start by dividing all the numbers in the ratio by the smallest value, giving:
1 : 1.008950371
This ratio is acceptably close to 1:1 so I assume the formula is of the form HnOn where n is a small integer. Let's initially assume that n is 1, so the mass would be
1.00794 + 15.999 = 17.00694
Obviously 17 is far smaller than 34.1. So let's divide 34.1 by 17.00694 and see what n should be:
34.1 / 17.00694 = 2.005063815
So the formula we want is H2O2, which is hydrogen peroxide.</span>
Answer:
C
Explanation:
The elements that will most likely lose an electron are those that are in Group 1. This is because they only have one valence electron in their outer shell. Atoms want to have 8 electrons in their outer shell and in order for the elements of Group 1 to do so, they could either lose one electron or gain 7 but losing one is easier to do. Out of these answer choices, the only one that belongs to Group 1 is potassium.